
Lecture: Consistency Models, TM

• Topics: consistency models, TM intro
(Section 5.6)
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Coherence Vs. Consistency

• Recall that coherence guarantees (i) that a write will
eventually be seen by other processors, and (ii) write
serialization (all processors see writes to the same location
in the same order)

• The consistency model defines the ordering of writes and
reads to different memory locations – the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions
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Example Programs

Initially, A = B = 0

P1                                 P2
A = 1                          B = 1
if (B == 0)                   if (A == 0)

critical section            critical section

Initially, A = B = 0

P1                 P2                 P3
A = 1

if (A == 1)
B = 1

if (B == 1)
register = A

Initially, Head = Data = 0

P1                         P2
Data = 2000    while (Head == 0)
Head = 1            { }

… = Data
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Sequential Consistency

P1                         P2
Instr-a                 Instr-A
Instr-b                 Instr-B
Instr-c                 Instr-C
Instr-d                 Instr-D
…                        …

We assume:
• Within a program, program order is preserved
• Each instruction executes atomically
• Instructions from different threads can be interleaved arbitrarily

Valid executions:
abAcBCDdeE…   or    ABCDEFabGc…   or   abcAdBe… or
aAbBcCdDeE…   or  …..
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Problem 1

• What are possible outputs for the program below?

Assume x=y=0 at the start of the program

Thread 1                                Thread 2
x = 10                                     y=20
y = x+y                                   x = y+x
Print y
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Problem 1

• What are possible outputs for the program below?

Assume x=y=0 at the start of the program

Thread 1                                Thread 2
A     x = 10                               a    y=20
B     y = x+y                             b    x = y+x
C     Print y

Possible scenarios:  5 choose 2 = 10
ABCab   ABaCb  ABabC  AaBCb  AaBbC

10          20          20         30         30
AabBC   aABCb  aABbC  aAbBC  abABC

50         30           30        50         30 6



Sequential Consistency

• Programmers assume SC;  makes it much easier to
reason about program behavior

• Hardware innovations can disrupt the SC model

• For example, if we assume write buffers, or out-of-order
execution, or if we drop ACKS in the coherence protocol,
the previous programs yield unexpected outputs
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Consistency Example - I

• An ooo core will see no dependence between instructions
dealing with A and instructions dealing with B; those
operations can therefore be re-ordered; this is fine for a
single thread, but not for multiple threads

Initially A = B = 0
P1                        P2

A  1 B  1
…                        …

if (B == 0)           if (A == 0)
Crit.Section         Crit.Section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities 8



Consistency Example - 2

Initially, A = B = 0

P1                 P2                         P3
A = 1

if (A == 1)
B = 1

if (B == 1)
register = A

If a coherence invalidation didn’t require ACKs, we can’t
confirm that everyone has seen the value of A.
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Sequential Consistency

• A multiprocessor is sequentially consistent if the result
of the execution is achieveable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

• Can implement sequential consistency by requiring the
following: program order, write serialization, everyone has
seen an update before a value is read – very intuitive for
the programmer, but extremely slow 

• This is very slow… alternatives:
 Add optimizations to the hardware
 Offer a relaxed memory consistency model and fences
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Relaxed Consistency Models

• We want an intuitive programming model (such as
sequential consistency) and we want high performance

• We care about data races and re-ordering constraints for
some parts of the program and not for others – hence,
we will relax some of the constraints for sequential
consistency for most of the program, but enforce them
for specific portions of the code

• Fence instructions are special instructions that require
all previous memory accesses to complete before
proceeding (sequential consistency)
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Fences

P1                                              P2
{                                             {
Region of code                       Region of code
with no races                          with no races

}                                             }

Fence                                     Fence
Acquire_lock                          Acquire_lock
Fence                                     Fence

{                                            {
Racy code                            Racy code

}                                            }

Fence                                   Fence
Release_lock                       Release_lock
Fence                                   Fence 12



Relaxing Constraints

• Sequential consistency constraints can be relaxed in the
following ways (allowing higher performance):
 within a processor, a read can complete before an

earlier write to a different memory location completes
(this was made possible in the write buffer example
and is of course, not a sequentially consistent model)

 within a processor, a write can complete before an
earlier write to a different memory location completes

 within a processor, a read or write can complete before
an earlier read to a different memory location completes

 a processor can read the value written by another
processor before all processors have seen the invalidate

 a processor can read its own write before the write
is visible to other processors 13



Transactions

• New paradigm to simplify programming
 instead of lock-unlock, use transaction begin-end
 locks are blocking, transactions execute speculatively

in the hope that there will be no conflicts

• Can yield better performance; Eliminates deadlocks

• Programmer can freely encapsulate code sections within
transactions and not worry about the impact on
performance and correctness (for the most part)

• Programmer specifies the code sections they’d like to see
execute atomically – the hardware takes care of the rest 
(provides illusion of atomicity) 14



Transactions

• Transactional semantics:
 when a transaction executes, it is as if the rest of the

system is suspended and the transaction is in isolation
 the reads and writes of a transaction happen as if they

are all a single atomic operation
 if the above conditions are not met, the transaction

fails to commit (abort) and tries again

transaction begin
read shared variables
arithmetic
write shared variables

transaction end
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Example

Producer-consumer relationships – producers place tasks at the tail of
a work-queue and consumers pull tasks out of the head

Enqueue                                       Dequeue
transaction begin                            transaction begin

if (tail == NULL)                              if (head->next == NULL)
update head and tail                       update head and tail

else                                                 else
update tail                                       update head

transaction end                               transaction end

With locks, neither thread can proceed in parallel since head/tail may be
updated – with transactions, enqueue and dequeue can proceed in
parallel – transactions will be aborted only if the queue is nearly empty
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Example

Hash table implementation
transaction begin

index = hash(key);
head = bucket[index];
traverse linked list until key matches
perform operations

transaction end

Most operations will likely not conflict  transactions proceed in parallel

Coarse-grain lock  serialize all operations
Fine-grained locks (one for each bucket)  more complexity, more storage,

concurrent reads not allowed,
concurrent writes to different elements not allowed
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TM Implementation

Core Core

Cache Cache

• Caches track read-sets and write-sets
• Writes are made visible only at the end of the transaction
• At transaction commit, make your writes visible; others may abort
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Detecting Conflicts – Basic Implementation

• Writes can be cached (can’t be written to memory) – if the
block needs to be evicted, flag an overflow (abort transaction
for now) – on an abort, invalidate the written cache lines

• Keep track of read-set and write-set (bits in the cache) for
each transaction

• When another transaction commits, compare its write set
with your own read set – a match causes an abort

• At transaction end, express intent to commit, broadcast
write-set (transactions can commit in parallel if their 
write-sets do not intersect)
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Summary of TM Benefits

• As easy to program as coarse-grain locks

• Performance similar to fine-grain locks

• Speculative parallelization

• Avoids deadlock

• Resilient to faults
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Design Space

• Data Versioning
 Eager: based on an undo log
 Lazy: based on a write buffer

• Conflict Detection
 Optimistic detection: check for conflicts at commit time

(proceed optimistically thru transaction)
 Pessimistic detection: every read/write checks for

conflicts (reduces work during commit)
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“Lazy” Implementation

• An implementation for a small-scale multiprocessor with
a snooping-based protocol

• Lazy versioning and lazy conflict detection

• Does not allow transactions to commit in parallel
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“Lazy” Implementation

• When a transaction issues a read, fetch the block in
read-only mode (if not already in cache) and set the
rd-bit for that cache line

• When a transaction issues a write, fetch that block in
read-only mode (if not already in cache), set the wr-bit
for that cache line and make changes in cache

• If a line with wr-bit set is evicted, the transaction must
be aborted (or must rely on some software mechanism
to handle saving overflowed data)
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“Lazy” Implementation

• When a transaction reaches its end, it must now make
its writes permanent

• A central arbiter is contacted (easy on a bus-based system),
the winning transaction holds on to the bus until all written
cache line addresses are broadcasted (this is the commit)
(need not do a writeback until the line is evicted – must
simply invalidate other readers of these cache lines)

• When another transaction (that has not yet begun to commit)
sees an invalidation for a line in its rd-set, it realizes its
lack of atomicity and aborts (clears its rd- and wr-bits and
re-starts)
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“Lazy” Implementation

• Lazy versioning: changes are made locally – the “master copy” is
updated only at the end of the transaction

• Lazy conflict detection: we are checking for conflicts only when one of
the transactions reaches its end

• Aborts are quick (must just clear bits in cache, flush pipeline and
reinstate a register checkpoint)

• Commit is slow (must check for conflicts, all the coherence operations
for writes are deferred until transaction end)

• No fear of deadlock/livelock – the first transaction to acquire the bus will
commit successfully

• Starvation is possible – need additional mechanisms 25



“Lazy” Implementation – Parallel Commits

• Writes cannot be rolled back – hence, before allowing
two transactions to commit in parallel, we must ensure
that they do not conflict with each other

• One possible implementation: the central arbiter can
collect signatures from each committing transaction
(a compressed representation of all touched addresses)

• Arbiter does not grant commit permissions if it detects
a possible conflict with the rd-wr-sets of transactions
that are in the process of committing

• The “lazy” design can also work with directory protocols
26



Title

• Bullet
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