
Lecture: Consistency Models, TM

• Topics: consistency models, TM intro
(Section 5.6)

1

Coherence Vs. Consistency

• Recall that coherence guarantees (i) that a write will
eventually be seen by other processors, and (ii) write
serialization (all processors see writes to the same location
in the same order)

• The consistency model defines the ordering of writes and
reads to different memory locations – the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions

2

Example Programs

Initially, A = B = 0

P1 P2
A = 1 B = 1
if (B == 0) if (A == 0)

critical section critical section

Initially, A = B = 0

P1 P2 P3
A = 1

if (A == 1)
B = 1

if (B == 1)
register = A

Initially, Head = Data = 0

P1 P2
Data = 2000 while (Head == 0)
Head = 1 { }

… = Data

3

Sequential Consistency

P1 P2
Instr-a Instr-A
Instr-b Instr-B
Instr-c Instr-C
Instr-d Instr-D
… …

We assume:
• Within a program, program order is preserved
• Each instruction executes atomically
• Instructions from different threads can be interleaved arbitrarily

Valid executions:
abAcBCDdeE… or ABCDEFabGc… or abcAdBe… or
aAbBcCdDeE… or …..

4

Problem 1

• What are possible outputs for the program below?

Assume x=y=0 at the start of the program

Thread 1 Thread 2
x = 10 y=20
y = x+y x = y+x
Print y

5

Problem 1

• What are possible outputs for the program below?

Assume x=y=0 at the start of the program

Thread 1 Thread 2
A x = 10 a y=20
B y = x+y b x = y+x
C Print y

Possible scenarios: 5 choose 2 = 10
ABCab ABaCb ABabC AaBCb AaBbC

10 20 20 30 30
AabBC aABCb aABbC aAbBC abABC

50 30 30 50 30 6

Sequential Consistency

• Programmers assume SC; makes it much easier to
reason about program behavior

• Hardware innovations can disrupt the SC model

• For example, if we assume write buffers, or out-of-order
execution, or if we drop ACKS in the coherence protocol,
the previous programs yield unexpected outputs

7

Consistency Example - I

• An ooo core will see no dependence between instructions
dealing with A and instructions dealing with B; those
operations can therefore be re-ordered; this is fine for a
single thread, but not for multiple threads

Initially A = B = 0
P1 P2

A 1 B 1
… …

if (B == 0) if (A == 0)
Crit.Section Crit.Section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities 8

Consistency Example - 2

Initially, A = B = 0

P1 P2 P3
A = 1

if (A == 1)
B = 1

if (B == 1)
register = A

If a coherence invalidation didn’t require ACKs, we can’t
confirm that everyone has seen the value of A.

9

Sequential Consistency

• A multiprocessor is sequentially consistent if the result
of the execution is achieveable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

• Can implement sequential consistency by requiring the
following: program order, write serialization, everyone has
seen an update before a value is read – very intuitive for
the programmer, but extremely slow

• This is very slow… alternatives:
 Add optimizations to the hardware
 Offer a relaxed memory consistency model and fences

10

Relaxed Consistency Models

• We want an intuitive programming model (such as
sequential consistency) and we want high performance

• We care about data races and re-ordering constraints for
some parts of the program and not for others – hence,
we will relax some of the constraints for sequential
consistency for most of the program, but enforce them
for specific portions of the code

• Fence instructions are special instructions that require
all previous memory accesses to complete before
proceeding (sequential consistency)

11

Fences

P1 P2
{ {
Region of code Region of code
with no races with no races

} }

Fence Fence
Acquire_lock Acquire_lock
Fence Fence

{ {
Racy code Racy code

} }

Fence Fence
Release_lock Release_lock
Fence Fence 12

Relaxing Constraints

• Sequential consistency constraints can be relaxed in the
following ways (allowing higher performance):
 within a processor, a read can complete before an

earlier write to a different memory location completes
(this was made possible in the write buffer example
and is of course, not a sequentially consistent model)

 within a processor, a write can complete before an
earlier write to a different memory location completes

 within a processor, a read or write can complete before
an earlier read to a different memory location completes

 a processor can read the value written by another
processor before all processors have seen the invalidate

 a processor can read its own write before the write
is visible to other processors 13

Transactions

• New paradigm to simplify programming
 instead of lock-unlock, use transaction begin-end
 locks are blocking, transactions execute speculatively

in the hope that there will be no conflicts

• Can yield better performance; Eliminates deadlocks

• Programmer can freely encapsulate code sections within
transactions and not worry about the impact on
performance and correctness (for the most part)

• Programmer specifies the code sections they’d like to see
execute atomically – the hardware takes care of the rest
(provides illusion of atomicity) 14

Transactions

• Transactional semantics:
 when a transaction executes, it is as if the rest of the

system is suspended and the transaction is in isolation
 the reads and writes of a transaction happen as if they

are all a single atomic operation
 if the above conditions are not met, the transaction

fails to commit (abort) and tries again

transaction begin
read shared variables
arithmetic
write shared variables

transaction end
15

Example

Producer-consumer relationships – producers place tasks at the tail of
a work-queue and consumers pull tasks out of the head

Enqueue Dequeue
transaction begin transaction begin

if (tail == NULL) if (head->next == NULL)
update head and tail update head and tail

else else
update tail update head

transaction end transaction end

With locks, neither thread can proceed in parallel since head/tail may be
updated – with transactions, enqueue and dequeue can proceed in
parallel – transactions will be aborted only if the queue is nearly empty

16

Example

Hash table implementation
transaction begin

index = hash(key);
head = bucket[index];
traverse linked list until key matches
perform operations

transaction end

Most operations will likely not conflict transactions proceed in parallel

Coarse-grain lock serialize all operations
Fine-grained locks (one for each bucket) more complexity, more storage,

concurrent reads not allowed,
concurrent writes to different elements not allowed

17

TM Implementation

Core Core

Cache Cache

• Caches track read-sets and write-sets
• Writes are made visible only at the end of the transaction
• At transaction commit, make your writes visible; others may abort

18

Detecting Conflicts – Basic Implementation

• Writes can be cached (can’t be written to memory) – if the
block needs to be evicted, flag an overflow (abort transaction
for now) – on an abort, invalidate the written cache lines

• Keep track of read-set and write-set (bits in the cache) for
each transaction

• When another transaction commits, compare its write set
with your own read set – a match causes an abort

• At transaction end, express intent to commit, broadcast
write-set (transactions can commit in parallel if their
write-sets do not intersect)

19

Summary of TM Benefits

• As easy to program as coarse-grain locks

• Performance similar to fine-grain locks

• Speculative parallelization

• Avoids deadlock

• Resilient to faults

20

Design Space

• Data Versioning
 Eager: based on an undo log
 Lazy: based on a write buffer

• Conflict Detection
 Optimistic detection: check for conflicts at commit time

(proceed optimistically thru transaction)
 Pessimistic detection: every read/write checks for

conflicts (reduces work during commit)

21

“Lazy” Implementation

• An implementation for a small-scale multiprocessor with
a snooping-based protocol

• Lazy versioning and lazy conflict detection

• Does not allow transactions to commit in parallel

22

“Lazy” Implementation

• When a transaction issues a read, fetch the block in
read-only mode (if not already in cache) and set the
rd-bit for that cache line

• When a transaction issues a write, fetch that block in
read-only mode (if not already in cache), set the wr-bit
for that cache line and make changes in cache

• If a line with wr-bit set is evicted, the transaction must
be aborted (or must rely on some software mechanism
to handle saving overflowed data)

23

“Lazy” Implementation

• When a transaction reaches its end, it must now make
its writes permanent

• A central arbiter is contacted (easy on a bus-based system),
the winning transaction holds on to the bus until all written
cache line addresses are broadcasted (this is the commit)
(need not do a writeback until the line is evicted – must
simply invalidate other readers of these cache lines)

• When another transaction (that has not yet begun to commit)
sees an invalidation for a line in its rd-set, it realizes its
lack of atomicity and aborts (clears its rd- and wr-bits and
re-starts)

24

“Lazy” Implementation

• Lazy versioning: changes are made locally – the “master copy” is
updated only at the end of the transaction

• Lazy conflict detection: we are checking for conflicts only when one of
the transactions reaches its end

• Aborts are quick (must just clear bits in cache, flush pipeline and
reinstate a register checkpoint)

• Commit is slow (must check for conflicts, all the coherence operations
for writes are deferred until transaction end)

• No fear of deadlock/livelock – the first transaction to acquire the bus will
commit successfully

• Starvation is possible – need additional mechanisms 25

“Lazy” Implementation – Parallel Commits

• Writes cannot be rolled back – hence, before allowing
two transactions to commit in parallel, we must ensure
that they do not conflict with each other

• One possible implementation: the central arbiter can
collect signatures from each committing transaction
(a compressed representation of all touched addresses)

• Arbiter does not grant commit permissions if it detects
a possible conflict with the rd-wr-sets of transactions
that are in the process of committing

• The “lazy” design can also work with directory protocols
26

Title

• Bullet

27

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

