
Lecture: Memory, Coherence Protocols

• Topics: wrap-up of memory systems, intro to multi-thread
programming models
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Refresh

• Every DRAM cell must be refreshed within a 64 ms window

• A row read/write automatically refreshes the row

• Every refresh command performs refresh on a number of
rows, the memory system is unavailable during that time

• A refresh command is issued by the memory controller
once every 7.8us on average
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Problem 5

• Consider a single 4 GB memory rank that has 8 banks.
Each row in a bank has a capacity of 8KB.  On average,
it takes 40ns to refresh one row.  Assume that all 8 banks
can be refreshed in parallel.  For what fraction of time will
this rank be unavailable?  How many rows are refreshed
with every refresh command?
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Problem 5

• Consider a single 4 GB memory rank that has 8 banks.
Each row in a bank has a capacity of 8KB.  On average,
it takes 40ns to refresh one row.  Assume that all 8 banks
can be refreshed in parallel.  For what fraction of time will
this rank be unavailable?  How many rows are refreshed
with every refresh command?

The memory has 4GB/8KB = 512K rows
There are 8K refresh operations in one 64ms interval.
Each refresh operation must handle 512K/8K = 64 rows
Each bank must handle 8 rows
One refresh operation is issued every 7.8us and the
memory is unavailable for 320ns, i.e., for 4% of time.
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Address Mapping Policies

• Consecutive cache lines can be placed in the same row
to boost row buffer hit rates

• Consecutive cache lines can be placed in different ranks
to boost parallelism

• Example address mapping policies:
row:rank:bank:channel:column:blkoffset

row:column:rank:bank:channel:blkoffset 
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Reads and Writes

• A single bus is used for reads and writes

• The bus direction must be reversed when switching between
reads and writes; this takes time and leads to bus idling

• Hence, writes are performed in bursts; a write buffer stores
pending writes until a high water mark is reached

• Writes are drained until a low water mark is reached
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Scheduling Policies

• FCFS: Issue the first read or write in the queue that is
ready for issue

• First Ready - FCFS: First issue row buffer hits if you can

• Close page -- early precharge

• Stall Time Fair: First issue row buffer hits, unless other
threads are being neglected
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Error Correction

• For every 64-bit word, can add an 8-bit code that can
detect two errors and correct one error; referred to as
SECDED – single error correct double error detect

• A rank is now made up of 9 x8 chips, instead of 8 x8 chips

• Stronger forms of error protection exist: a system is
chipkill correct if it can handle an entire DRAM chip failure
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Modern Memory System

PROC

........

....

....
• 4 DDR3 channels
• 64-bit data channels
• 800 MHz channels
• 1-2 DIMMs/channel
• 1-4 ranks/channel
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Cutting-Edge Systems

PROC
SMB

....

....
• The link into the processor is narrow and high frequency
• The Scalable Memory Buffer chip is a “router” that connects

to multiple DDR3 channels (wide and slow)
• Boosts processor pin bandwidth and memory capacity
• More expensive, high power
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Problem 6

• What is the boost in capacity and bandwidth provided by
using an SMB?  Assume that a DDR3 channel requires
64 data wires, 32 addr/cmd wires, and runs at a frequency
of 800 MHz (DDR).  Assume that the SMB connects to the
processor with two 16-bit links that run at frequencies of
6.4 GHz (no DDR).  Assume that two DDR3 channels can
connect to an SMB.  Assume that 50% of the downstream
link’s bandwidth is used for commands and addresses.
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Problem 6

• What is the boost in capacity and bandwidth provided by
using an SMB?  Assume that a DDR3 channel requires
64 data wires, 32 addr/cmd wires, and runs at a frequency
of 800 MHz (DDR).  Assume that the SMB connects to the
processor with two 16-bit links that run at frequencies of
6.4 GHz (no DDR).  Assume that two DDR3 channels can
connect to an SMB.  Assume that 50% of the downstream
link’s bandwidth is used for commands and addresses.

The increase in processor read/write bw = 
(6.4GHz x 72) /(800MHz x 2 x 64) = 4.5x
(for every 96 wires used by DDR3, you can have 3 32-bit links;
each 32-bit link supports effectively 24 bits of read/write data)

Increase in per-pin capacity = 4 DIMMs-per-32-pins /
2 DIMMs-per-96-pins  = 6x  12



Future Memory Trends

• Processor pin count is not increasing

• High memory bandwidth requires high pin frequency

• High memory capacity requires narrow channels per “DIMM”

• 3D stacking can enable high memory capacity and high
channel frequency (e.g., Micron HMC)
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Future Memory Cells

• DRAM cell scaling is expected to slow down

• Emerging memory cells are expected to have better scaling
properties and eventually higher density: phase change
memory (PCM), spin torque transfer (STT-RAM), etc.

• PCM: heat and cool a material with elec pulses – the rate of
heat/cool determines if the material is crystalline/amorphous;
amorphous has higher resistance (i.e., no longer using
capacitive charge to store a bit)

• Advantages: non-volatile, high density, faster than Flash/disk
• Disadvantages: poor write latency/energy, low endurance
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Silicon Photonics

• Game-changing technology that uses light waves for
communication; not mature yet and high cost likely

• No longer relies on pins; a few waveguides can emerge
from a processor

• Each waveguide carries (say) 64 wavelengths of light 
(dense wave division multiplexing – DWDM)

• The signal on a wavelength can be modulated at high
frequency – gives very high bandwidth per waveguide 
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Multiprocs -- Memory Organization - I

• Centralized shared-memory multiprocessor   or
Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
memory – since all processors see the same memory
organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
entire memory address space

• Can centralized memory emerge as a bandwidth
bottleneck? – not if you have large caches and employ
fewer than a dozen processors
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SMPs or Centralized Shared-Memory
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Multiprocs -- Memory Organization - II

• For higher scalability, memory is distributed among
processors  distributed memory multiprocessors

• If one processor can directly address the memory local
to another processor, the address space is shared 
distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
communicate data  cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
memory has lower latency than remote memory
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Distributed Memory Multiprocessors
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Shared-Memory Vs. Message-Passing

Shared-memory:
• Well-understood programming model
• Communication is implicit and hardware handles protection
• Hardware-controlled caching

Message-passing:
• No cache coherence  simpler hardware
• Explicit communication  easier for the programmer to
restructure code

• Sender can initiate data transfer
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Ocean Kernel

Procedure Solve(A)
begin
diff = done = 0;
while (!done) do

diff = 0;
for i  1 to n do

for j  1 to n do
temp = A[i,j];
A[i,j]  0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure 
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Shared Address Space Model

int  n, nprocs;
float  **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A  G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i  mymin to mymax

for j  1 to n do
…

endfor
endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile
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Message Passing Model
main()

read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA  malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0) 
SEND(&myA[1,0], n, pid-1, ROW);

if (pid != nprocs-1)
SEND(&myA[nn,0], n, pid+1, ROW);

if (pid != 0)
RECEIVE(&myA[0,0], n, pid-1, ROW);

if (pid != nprocs-1)
RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i  1 to nn do
for j  1 to n do

…
endfor

endfor
if (pid != 0)
SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i  1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if  (mydiff < TOL)  done = 1;
for i  1 to nprocs-1  do

SEND(done, 1, I, DONE);
endfor

endif
endwhile
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Title
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