
Lecture: Memory, Coherence Protocols

• Topics: wrap-up of memory systems, intro to multi-thread
programming models

1

Refresh

• Every DRAM cell must be refreshed within a 64 ms window

• A row read/write automatically refreshes the row

• Every refresh command performs refresh on a number of
rows, the memory system is unavailable during that time

• A refresh command is issued by the memory controller
once every 7.8us on average

2

Problem 5

• Consider a single 4 GB memory rank that has 8 banks.
Each row in a bank has a capacity of 8KB. On average,
it takes 40ns to refresh one row. Assume that all 8 banks
can be refreshed in parallel. For what fraction of time will
this rank be unavailable? How many rows are refreshed
with every refresh command?

3

Problem 5

• Consider a single 4 GB memory rank that has 8 banks.
Each row in a bank has a capacity of 8KB. On average,
it takes 40ns to refresh one row. Assume that all 8 banks
can be refreshed in parallel. For what fraction of time will
this rank be unavailable? How many rows are refreshed
with every refresh command?

The memory has 4GB/8KB = 512K rows
There are 8K refresh operations in one 64ms interval.
Each refresh operation must handle 512K/8K = 64 rows
Each bank must handle 8 rows
One refresh operation is issued every 7.8us and the
memory is unavailable for 320ns, i.e., for 4% of time.

4

Address Mapping Policies

• Consecutive cache lines can be placed in the same row
to boost row buffer hit rates

• Consecutive cache lines can be placed in different ranks
to boost parallelism

• Example address mapping policies:
row:rank:bank:channel:column:blkoffset

row:column:rank:bank:channel:blkoffset

5

Reads and Writes

• A single bus is used for reads and writes

• The bus direction must be reversed when switching between
reads and writes; this takes time and leads to bus idling

• Hence, writes are performed in bursts; a write buffer stores
pending writes until a high water mark is reached

• Writes are drained until a low water mark is reached

6

Scheduling Policies

• FCFS: Issue the first read or write in the queue that is
ready for issue

• First Ready - FCFS: First issue row buffer hits if you can

• Close page -- early precharge

• Stall Time Fair: First issue row buffer hits, unless other
threads are being neglected

7

Error Correction

• For every 64-bit word, can add an 8-bit code that can
detect two errors and correct one error; referred to as
SECDED – single error correct double error detect

• A rank is now made up of 9 x8 chips, instead of 8 x8 chips

• Stronger forms of error protection exist: a system is
chipkill correct if it can handle an entire DRAM chip failure

8

Modern Memory System

PROC

........

....

....
• 4 DDR3 channels
• 64-bit data channels
• 800 MHz channels
• 1-2 DIMMs/channel
• 1-4 ranks/channel

9

Cutting-Edge Systems

PROC
SMB

....

....
• The link into the processor is narrow and high frequency
• The Scalable Memory Buffer chip is a “router” that connects

to multiple DDR3 channels (wide and slow)
• Boosts processor pin bandwidth and memory capacity
• More expensive, high power

10

Problem 6

• What is the boost in capacity and bandwidth provided by
using an SMB? Assume that a DDR3 channel requires
64 data wires, 32 addr/cmd wires, and runs at a frequency
of 800 MHz (DDR). Assume that the SMB connects to the
processor with two 16-bit links that run at frequencies of
6.4 GHz (no DDR). Assume that two DDR3 channels can
connect to an SMB. Assume that 50% of the downstream
link’s bandwidth is used for commands and addresses.

11

Problem 6

• What is the boost in capacity and bandwidth provided by
using an SMB? Assume that a DDR3 channel requires
64 data wires, 32 addr/cmd wires, and runs at a frequency
of 800 MHz (DDR). Assume that the SMB connects to the
processor with two 16-bit links that run at frequencies of
6.4 GHz (no DDR). Assume that two DDR3 channels can
connect to an SMB. Assume that 50% of the downstream
link’s bandwidth is used for commands and addresses.

The increase in processor read/write bw =
(6.4GHz x 72) /(800MHz x 2 x 64) = 4.5x
(for every 96 wires used by DDR3, you can have 3 32-bit links;
each 32-bit link supports effectively 24 bits of read/write data)

Increase in per-pin capacity = 4 DIMMs-per-32-pins /
2 DIMMs-per-96-pins = 6x 12

Future Memory Trends

• Processor pin count is not increasing

• High memory bandwidth requires high pin frequency

• High memory capacity requires narrow channels per “DIMM”

• 3D stacking can enable high memory capacity and high
channel frequency (e.g., Micron HMC)

13

Future Memory Cells

• DRAM cell scaling is expected to slow down

• Emerging memory cells are expected to have better scaling
properties and eventually higher density: phase change
memory (PCM), spin torque transfer (STT-RAM), etc.

• PCM: heat and cool a material with elec pulses – the rate of
heat/cool determines if the material is crystalline/amorphous;
amorphous has higher resistance (i.e., no longer using
capacitive charge to store a bit)

• Advantages: non-volatile, high density, faster than Flash/disk
• Disadvantages: poor write latency/energy, low endurance

14

Silicon Photonics

• Game-changing technology that uses light waves for
communication; not mature yet and high cost likely

• No longer relies on pins; a few waveguides can emerge
from a processor

• Each waveguide carries (say) 64 wavelengths of light
(dense wave division multiplexing – DWDM)

• The signal on a wavelength can be modulated at high
frequency – gives very high bandwidth per waveguide

15

Multiprocs -- Memory Organization - I

• Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
memory – since all processors see the same memory
organization uniform memory access (UMA)

• Shared-memory because all processors can access the
entire memory address space

• Can centralized memory emerge as a bandwidth
bottleneck? – not if you have large caches and employ
fewer than a dozen processors

16

SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

17

Multiprocs -- Memory Organization - II

• For higher scalability, memory is distributed among
processors distributed memory multiprocessors

• If one processor can directly address the memory local
to another processor, the address space is shared
distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
communicate data cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
memory has lower latency than remote memory

18

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

19

Shared-Memory Vs. Message-Passing

Shared-memory:
• Well-understood programming model
• Communication is implicit and hardware handles protection
• Hardware-controlled caching

Message-passing:
• No cache coherence simpler hardware
• Explicit communication easier for the programmer to
restructure code

• Sender can initiate data transfer

20

Ocean Kernel

Procedure Solve(A)
begin
diff = done = 0;
while (!done) do

diff = 0;
for i 1 to n do

for j 1 to n do
temp = A[i,j];
A[i,j] 0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure

21

Shared Address Space Model

int n, nprocs;
float **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i mymin to mymax

for j 1 to n do
…

endfor
endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile
22

Message Passing Model
main()

read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0)
SEND(&myA[1,0], n, pid-1, ROW);

if (pid != nprocs-1)
SEND(&myA[nn,0], n, pid+1, ROW);

if (pid != 0)
RECEIVE(&myA[0,0], n, pid-1, ROW);

if (pid != nprocs-1)
RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i 1 to nn do
for j 1 to n do

…
endfor

endfor
if (pid != 0)
SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i 1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if (mydiff < TOL) done = 1;
for i 1 to nprocs-1 do

SEND(done, 1, I, DONE);
endfor

endif
endwhile

23

Title

• Bullet

24

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

