Lecture: Memory Technology Innovations

- Topics: memory schedulers, refresh, state-of-the-art and upcoming changes: buffer chips, 3D stacking, non-volatile cells, photonics
- Midterm scores: 90+ is top 20, 85+ is top 40, 79+ is top 60, 69+ is top 80,
- Common errors: SWP, power equations

Row Buffers

- Each bank has a single row buffer
- Row buffers act as a cache within DRAM
 - Row buffer hit: ~20 ns access time (must only move data from row buffer to pins)
 - Empty row buffer access: ~40 ns (must first read arrays, then move data from row buffer to pins)
 - Row buffer conflict: ~60 ns (must first precharge the bitlines, then read new row, then move data to pins)
- In addition, must wait in the queue (tens of nano-seconds) and incur address/cmd/data transfer delays (~10 ns)

Open/Closed Page Policies

- If an access stream has locality, a row buffer is kept open
 - Row buffer hits are cheap (open-page policy)
 - Row buffer miss is a bank conflict and expensive because precharge is on the critical path
- If an access stream has little locality, bitlines are precharged immediately after access (close-page policy)
 - Nearly every access is a row buffer miss
 - The precharge is usually not on the critical path
- Modern memory controller policies lie somewhere between these two extremes (usually proprietary)

- For the following access stream, estimate the finish times for each access with the following scheduling policies:
 - ReqTime of arrivalOpenClosedOracularX0 ns
 - Y 10 ns
 - X+1 100 ns
 - X+2 200 ns
 - Y+1 250 ns
 - X+3 300 ns

 For the following access stream, estimate the finish times for each access with the following scheduling policies:

Time of arrival	Open	Closed	Oracular
0 ns	40	40	40
10 ns	100	100	100
100 ns	160	160	160
200 ns	220	240	220
250 ns	310	300	290
300 ns	370	360	350
	Time of arrival 0 ns 10 ns 100 ns 200 ns 250 ns 300 ns	Time of arrival Open 0 ns 40 10 ns 100 100 ns 160 200 ns 220 250 ns 310 300 ns 370	Time of arrivalOpenClosed0 ns404010 ns100100100 ns160160200 ns220240250 ns310300300 ns370360

• For the following access stream, estimate the finish times for each access with the following scheduling policies: Req Time of arrival Open Closed Oracular Х 10 ns X+1 15 ns Y 100 ns Y+1 180 ns X+2 190 ns Y+2 205 ns

• For the following access stream, estimate the finish times for each access with the following scheduling policies:

Req	Time of arrival	Open	Closed	Oracular
Х	10 ns	50	50	50
X+1	15 ns	70	70	70
Y	100 ns	160	140	140
Y+1	180 ns	200	220	200
X+2	190 ns	260	300	285
Y+2	205 ns	320	240	225

Address Mapping Policies

- Consecutive cache lines can be placed in the same row to boost row buffer hit rates
- Consecutive cache lines can be placed in different ranks to boost parallelism
- Example address mapping policies: row:rank:bank:channel:column:blkoffset

row:column:rank:bank:channel:blkoffset

- A single bus is used for reads and writes
- The bus direction must be reversed when switching between reads and writes; this takes time and leads to bus idling
- Hence, writes are performed in bursts; a write buffer stores pending writes until a high water mark is reached
- Writes are drained until a low water mark is reached

- FCFS: Issue the first read or write in the queue that is ready for issue
- First Ready FCFS: First issue row buffer hits if you can
- Close page -- early precharge
- Stall Time Fair: First issue row buffer hits, unless other threads are being neglected

Refresh

- Every DRAM cell must be refreshed within a 64 ms window
- A row read/write automatically refreshes the row
- Every refresh command performs refresh on a number of rows, the memory system is unavailable during that time
- A refresh command is issued by the memory controller once every 7.8us on average

 Consider a single 4 GB memory rank that has 8 banks. Each row in a bank has a capacity of 8KB. On average, it takes 40ns to refresh one row. Assume that all 8 banks can be refreshed in parallel. For what fraction of time will this rank be unavailable? How many rows are refreshed with every refresh command?

 Consider a single 4 GB memory rank that has 8 banks. Each row in a bank has a capacity of 8KB. On average, it takes 40ns to refresh one row. Assume that all 8 banks can be refreshed in parallel. For what fraction of time will this rank be unavailable? How many rows are refreshed with every refresh command?

The memory has 4GB/8KB = 512K rows There are 8K refresh operations in one 64ms interval. Each refresh operation must handle 512K/8K = 64 rows Each bank must handle 8 rows One refresh operation is issued every 7.8us and the memory is unavailable for 320ns, i.e., for 4% of time.

- For every 64-bit word, can add an 8-bit code that can detect two errors and correct one error; referred to as SECDED – single error correct double error detect
- A rank is now made up of 9 x8 chips, instead of 8 x8 chips
- Stronger forms of error protection exist: a system is chipkill correct if it can handle an entire DRAM chip failure

Modern Memory System

Cutting-Edge Systems

- The link into the processor is narrow and high frequency
- The Scalable Memory Buffer chip is a "router" that connects to multiple DDR3 channels (wide and slow)
- Boosts processor pin bandwidth and memory capacity
- More expensive, high power

Bullet