
Lecture: SMT, Cache Hierarchies

• Topics: memory dependence wrap-up, SMT processors,
cache access basics and innovations (Sections B.1-B.3, 2.1)

1

Problem 0

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume
memory dependence prediction, with a default prediction
that there is no dependence.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1 [R2] 3 abcd
LD R3 [R4] 6 adde
ST R5 [R6] 4 7 abba
LD R7 [R8] 2 abce
ST R9 [R10] 8 3 abba
LD R11 [R12] 1 abba

2

Problem 0

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume
memory dependence prediction, with a default prediction
that there is no dependence.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1 [R2] 3 abcd 4 5
LD R3 [R4] 6 adde 7 8
ST R5 [R6] 4 7 abba 5 commit
LD R7 [R8] 2 abce 3 4
ST R9 [R10] 8 3 abba 9 commit
LD R11 [R12] 1 abba 2 3/10

3

Thread-Level Parallelism

• Motivation:
 a single thread leaves a processor under-utilized

for most of the time
 by doubling processor area, single thread performance

barely improves

• Strategies for thread-level parallelism:
 multiple threads share the same large processor

reduces under-utilization, efficient resource allocation
Simultaneous Multi-Threading (SMT)

 each thread executes on its own mini processor
simple design, low interference between threads
Chip Multi-Processing (CMP) or multi-core

4

How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every
cycle, especially when there is a cache miss

• Fine-grained multithreading can only issue instructions from a single thread
in a cycle – can not find max work every cycle, but cache misses can be tolerated

• Simultaneous multithreading can issue instructions from any thread every
cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2
Thread 3
Thread 4
Idle

5

What Resources are Shared?

• Multiple threads are simultaneously active (in other words,
a new thread can start without a context switch)

• For correctness, each thread needs its own PC, IFQ,
logical regs (and its own mappings from logical to phys regs)

• For performance, each thread could have its own ROB/LSQ
(so that a stall in one thread does not stall commit in other
threads), I-cache, branch predictor, D-cache, etc. (for low
interference), although note that more sharing better
utilization of resources

• Each additional thread costs a PC, IFQ, rename tables,
and ROB – cheap! 6

Front
End

Front
End

Front
End

Front
End

Execution Engine

Rename ROB

I-Cache Bpred

Regs IQ

FUsDCache

Private/
Shared

Front-end

Private
Front-end

Shared
Exec Engine

Pipeline Structure

7

Resource Sharing

R1 R1 + R2
R3 R1 + R4
R5 R1 + R3

R2 R1 + R2
R5 R1 + R2
R3 R5 + R3

P65 P1 + P2
P66 P65 + P4
P67 P65 + P66

P76 P33 + P34
P77 P33 + P76
P78 P77 + P35

P65 P1 + P2
P66 P65 + P4
P67 P65 + P66
P76 P33 + P34
P77 P33 + P76
P78 P77 + P35

FU FU FU FU

Instr Fetch

Instr Fetch

Instr Rename

Instr Rename Issue Queue

Register File

Thread-1

Thread-2

8

Performance Implications of SMT

• Single thread performance is likely to go down (caches,
branch predictors, registers, etc. are shared) – this effect
can be mitigated by trying to prioritize one thread

• While fetching instructions, thread priority can dramatically
influence total throughput – a widely accepted heuristic
(ICOUNT): fetch such that each thread has an equal share
of processor resources

• With eight threads in a processor with many resources,
SMT yields throughput improvements of roughly 2-4

9

Pentium4 Hyper-Threading

• Two threads – the Linux operating system operates as if it
is executing on a two-processor system

• When there is only one available thread, it behaves like a
regular single-threaded superscalar processor

• Statically divided resources: ROB, LSQ, issueq -- a
slow thread will not cripple thruput (might not scale)

• Dynamically shared: trace cache and decode
(fine-grained multi-threaded, round-robin), FUs,
data cache, bpred

10

Multi-Programmed Speedup

• sixtrack and eon do not degrade
their partners (small working sets?)

• swim and art degrade their
partners (cache contention?)

• Best combination: swim & sixtrack
worst combination: swim & art

• Static partitioning ensures low
interference – worst slowdown
is 0.9

11

The Cache Hierarchy

Core L1
L2

L3

Off-chip memory
12

Problem 1

• Memory access time: Assume a program that has cache
access times of 1-cyc (L1), 10-cyc (L2), 30-cyc (L3), and
300-cyc (memory), and MPKIs of 20 (L1), 10 (L2), and 5 (L3).
Should you get rid of the L3?

13

Problem 1

• Memory access time: Assume a program that has cache
access times of 1-cyc (L1), 10-cyc (L2), 30-cyc (L3), and
300-cyc (memory), and MPKIs of 20 (L1), 10 (L2), and 5 (L3).
Should you get rid of the L3?

With L3: 1000 + 10x20 + 30x10 + 300x5 = 3000
Without L3: 1000 + 10x20 + 10x300 = 4200

14

Accessing the Cache

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

8 words: 3 index bits

Byte address

Data array
Sets

Offset

15

The Tag Array

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array
16

Increasing Line Size

32-byte cache
line size or
block size

10100000

Byte address

Tag

Data arrayTag array

Offset

A large cache line size smaller tag array,
fewer misses because of spatial locality

17

Associativity

10100000

Byte address

Tag

Data arrayTag array

Set associativity fewer conflicts; wasted power
because multiple data and tags are read

Way-1 Way-2

Compare 18

Problem 2

• Assume a direct-mapped cache with just 4 sets. Assume
that block A maps to set 0, B to 1, C to 2, D to 3, E to 0, and
so on. For the following access pattern, estimate the hits
and misses:

A B B E C C A D B F A E G C G A

19

Problem 2

• Assume a direct-mapped cache with just 4 sets. Assume
that block A maps to set 0, B to 1, C to 2, D to 3, E to 0, and
so on. For the following access pattern, estimate the hits
and misses:

A B B E C C A D B F A E G C G A
M MH MM H MM HM HMM M M M

20

Problem 3

• Assume a 2-way set-associative cache with just 2 sets.
Assume that block A maps to set 0, B to 1, C to 0, D to 1,
E to 0, and so on. For the following access pattern,
estimate the hits and misses:

A B B E C C A D B F A E G C G A

21

Problem 3

• Assume a 2-way set-associative cache with just 2 sets.
Assume that block A maps to set 0, B to 1, C to 0, D to 1,
E to 0, and so on. For the following access pattern,
estimate the hits and misses:

A B B E C C A D B F A E G C G A
M MH M MH MM HM HMM M H M

22

Problem 4

• 64 KB 16-way set-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets?

• How many index bits, offset bits, tag bits?

• How large is the tag array?

23

Problem 4

• 64 KB 16-way set-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets? 64

• How many index bits (6), offset bits (6), tag bits (28)?

• How large is the tag array (28 Kb)?

24

Title

• Bullet

25

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

