
Lecture: SMT, Cache Hierarchies

• Topics: memory dependence wrap-up, SMT processors,
cache access basics and innovations (Sections B.1-B.3, 2.1)
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Problem 0

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st. Assume
memory dependence prediction, with a default prediction
that there is no dependence.

Ad. Op  St. Op  Ad.Val Ad.Cal Mem.Acc
LD   R1  [R2]          3                     abcd
LD   R3  [R4]      6                     adde
ST   R5  [R6]          4            7       abba
LD   R7  [R8]       2                     abce
ST   R9  [R10]        8            3       abba
LD   R11  [R12]      1                     abba
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Problem 0

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st. Assume
memory dependence prediction, with a default prediction
that there is no dependence.

Ad. Op  St. Op  Ad.Val Ad.Cal Mem.Acc
LD   R1  [R2]          3                     abcd 4              5
LD   R3  [R4]      6                     adde 7              8
ST   R5  [R6]          4            7       abba 5           commit
LD   R7  [R8]       2                     abce 3              4
ST   R9  [R10]        8            3       abba 9           commit
LD   R11  [R12]      1                     abba 2             3/10
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Thread-Level Parallelism

• Motivation: 
 a single thread leaves a processor under-utilized 

for most of the time
 by doubling processor area, single thread performance

barely improves

• Strategies for thread-level parallelism:
 multiple threads share the same large processor 

reduces under-utilization, efficient resource allocation
Simultaneous Multi-Threading (SMT)

 each thread executes on its own mini processor 
simple design, low interference between threads
Chip Multi-Processing (CMP) or multi-core
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How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every
cycle, especially when there is a cache miss

• Fine-grained multithreading can only issue instructions from a single thread
in a cycle – can not find max work every cycle, but cache misses can be tolerated

• Simultaneous multithreading can issue instructions from any thread every
cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2
Thread 3
Thread 4
Idle
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What Resources are Shared?

• Multiple threads are simultaneously active (in other words,
a new thread can start without a context switch)

• For correctness, each thread needs its own PC, IFQ, 
logical regs (and its own mappings from logical to phys regs)

• For performance, each thread could have its own ROB/LSQ
(so that a stall in one thread does not stall commit in other
threads), I-cache, branch predictor, D-cache, etc. (for low
interference), although note that more sharing  better
utilization of resources

• Each additional thread costs a PC, IFQ, rename tables,
and ROB  – cheap! 6



Front
End

Front
End

Front
End

Front
End

Execution Engine

Rename ROB

I-Cache Bpred

Regs IQ

FUsDCache

Private/
Shared

Front-end

Private
Front-end

Shared
Exec Engine

Pipeline Structure
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Resource Sharing

R1  R1 + R2
R3  R1 + R4
R5  R1 + R3

R2  R1 + R2
R5  R1 + R2
R3  R5 + R3

P65 P1 + P2
P66  P65 + P4
P67  P65 + P66

P76  P33 + P34
P77  P33 + P76
P78  P77 + P35

P65 P1 + P2
P66  P65 + P4
P67  P65 + P66
P76  P33 + P34
P77  P33 + P76
P78  P77 + P35

FU FU FU FU

Instr Fetch

Instr Fetch

Instr Rename

Instr Rename Issue Queue

Register File

Thread-1

Thread-2
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Performance Implications of SMT

• Single thread performance is likely to go down (caches,
branch predictors, registers, etc. are shared) – this effect
can be mitigated by trying to prioritize one thread

• While fetching instructions, thread priority can dramatically
influence total throughput – a widely accepted heuristic
(ICOUNT): fetch such that each thread has an equal share
of processor resources

• With eight threads in a processor with many resources,
SMT yields throughput improvements of roughly 2-4
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Pentium4 Hyper-Threading

• Two threads – the Linux operating system operates as if it
is executing on a two-processor system

• When there is only one available thread, it behaves like a
regular single-threaded superscalar processor

• Statically divided resources: ROB, LSQ, issueq -- a
slow thread will not cripple thruput (might not scale)

• Dynamically shared: trace cache and decode
(fine-grained multi-threaded, round-robin), FUs,
data cache, bpred
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Multi-Programmed Speedup

• sixtrack and eon do not degrade
their partners (small working sets?)

• swim and art degrade their
partners (cache contention?)

• Best combination: swim & sixtrack
worst combination: swim & art

• Static partitioning ensures low
interference – worst slowdown
is 0.9
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The Cache Hierarchy

Core L1
L2

L3

Off-chip memory
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Problem 1

• Memory access time:  Assume a program that has cache
access times of 1-cyc (L1), 10-cyc (L2), 30-cyc (L3), and
300-cyc (memory), and MPKIs of 20 (L1), 10 (L2), and 5 (L3).
Should you get rid of the L3?
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Problem 1

• Memory access time:  Assume a program that has cache
access times of 1-cyc (L1), 10-cyc (L2), 30-cyc (L3), and
300-cyc (memory), and MPKIs of 20 (L1), 10 (L2), and 5 (L3).
Should you get rid of the L3?

With L3: 1000 + 10x20 + 30x10 + 300x5 = 3000
Without L3: 1000 + 10x20 + 10x300 = 4200
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Accessing the Cache

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

8 words: 3 index bits

Byte address

Data array
Sets

Offset
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The Tag Array

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array
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Increasing Line Size

32-byte cache
line size or 
block size

10100000

Byte address

Tag

Data arrayTag array

Offset

A large cache line size  smaller tag array,
fewer misses because of spatial locality
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Associativity

10100000

Byte address

Tag

Data arrayTag array

Set associativity  fewer conflicts; wasted power
because multiple data and tags are read

Way-1 Way-2

Compare 18



Problem 2

• Assume a direct-mapped cache with just 4 sets.  Assume
that block A maps to set 0, B to 1, C to 2, D to 3, E to 0, and
so on.  For the following access pattern, estimate the hits
and misses:

A B B E C C A D B F A E G C G A
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Problem 2

• Assume a direct-mapped cache with just 4 sets.  Assume
that block A maps to set 0, B to 1, C to 2, D to 3, E to 0, and
so on.  For the following access pattern, estimate the hits
and misses:

A B B E C C A D B F A E G C G A
M MH MM H MM HM HMM M M M
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Problem 3

• Assume a 2-way set-associative cache with just 2 sets.
Assume that block A maps to set 0, B to 1, C to 0, D to 1,
E to 0, and so on.  For the following access pattern,
estimate the hits and misses:

A B B E C C A D B F A E G C G A
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Problem 3

• Assume a 2-way set-associative cache with just 2 sets.
Assume that block A maps to set 0, B to 1, C to 0, D to 1,
E to 0, and so on.  For the following access pattern,
estimate the hits and misses:

A B B E C C A D B F A E G C G A
M MH M MH MM HM HMM M H M
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Problem 4

• 64 KB 16-way set-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets?

• How many index bits, offset bits, tag bits?

• How large is the tag array?

23



Problem 4

• 64 KB 16-way set-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets?  64

• How many index bits (6), offset bits (6), tag bits (28)?

• How large is the tag array (28 Kb)?
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Title

• Bullet
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