Lecture: Out-of-order Processors

- Topics: out-of-order implementations with issue queue, register renaming, and reorder buffer, timing, LSQ

An Out-of-Order Processor Implementation

Design Details - I

- Instructions enter the pipeline in order
- No need for branch delay slots if prediction happens in time
- Instructions leave the pipeline in order - all instructions that enter also get placed in the ROB - the process of an instruction leaving the ROB (in order) is called commit an instruction commits only if it and all instructions before it have completed successfully (without an exception)
- To preserve precise exceptions, a result is written into the register file only when the instruction commits - until then, the result is saved in a temporary register in the ROB

Design Details - II

- Instructions get renamed and placed in the issue queue some operands are available (T1-T6; R1-R32), while others are being produced by instructions in flight (T1-T6)
- As instructions finish, they write results into the ROB (T1-T6) and broadcast the operand tag (T1-T6) to the issue queue instructions now know if their operands are ready
- When a ready instruction issues, it reads its operands from T1-T6 and R1-R32 and executes (out-of-order execution)
- Can you have WAW or WAR hazards? By using more names (T1-T6), name dependences can be avoided

Design Details - III

- If instr-3 raises an exception, wait until it reaches the top of the ROB - at this point, R1-R32 contain results for all instructions up to instr-3 - save registers, save PC of instr-3, and service the exception
- If branch is a mispredict, flush all instructions after the branch and start on the correct path - mispredicted instrs will not have updated registers (the branch cannot commit until it has completed and the flush happens as soon as the branch completes)
- Potential problems: ?

Problem 1

- Show the renamed version of the following code: Assume that you have 4 rename registers T1-T4
$\mathrm{R} 1 \leftarrow \mathrm{R} 2+\mathrm{R} 3$
$\mathrm{R} 3 \leftarrow \mathrm{R} 4+\mathrm{R} 5$
BEQZ R1
$\mathrm{R} 1 \leftarrow \mathrm{R} 1+\mathrm{R} 3$
$\mathrm{R} 1 \leftarrow \mathrm{R} 1+\mathrm{R} 3$
$\mathrm{R} 3 \leftarrow \mathrm{R} 1+\mathrm{R} 3$

Problem 1

- Show the renamed version of the following code: Assume that you have 4 rename registers T1-T4

$\mathrm{R} 1 \leftarrow \mathrm{R} 2+\mathrm{R} 3$
$\mathrm{R} 3 \leftarrow \mathrm{R} 4+\mathrm{R} 5$
BEQZ R1
$\mathrm{R} 1 \leftarrow \mathrm{R} 1+\mathrm{R} 3$
$\mathrm{R} 1 \leftarrow \mathrm{R} 1+\mathrm{R} 3$
$\mathrm{R} 3 \leftarrow \mathrm{R} 1+\mathrm{R} 3$

$\mathrm{T} 1 \leftarrow \mathrm{R} 2+\mathrm{R} 3$
$\mathrm{T} 2 \leftarrow \mathrm{R} 4+\mathrm{R} 5$
BEQZ T1
$\mathrm{T} 4 \leftarrow \mathrm{~T} 1+\mathrm{T} 2$
$\mathrm{T} 1 \leftarrow \mathrm{~T} 4+\mathrm{T} 2$
$\mathrm{T} 2 \leftarrow \mathrm{~T} 1+\mathrm{R} 3$

Managing Register Names

Temporary values are stored in the register file and not the ROB

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

The Commit Process

- On commit, no copy is required
- The register map table is updated - the "committed" value of R1 is now in P33 and not P1 - on an exception, P33 is copied to memory and not P1
- An instruction in the issue queue need not modify its input operand when the producer commits
- When instruction-1 commits, we no longer have any use for P1 - it is put in a free pool and a new instruction can now enter the pipeline \rightarrow for every instr that commits, a new instr can enter the pipeline \rightarrow number of in-flight instrs is a constant = number of extra (rename) registers

The Alpha 21264 Out-of-Order Implementation

Problem 2

- Show the renamed version of the following code: Assume that you have 36 physical registers and 32 architected registers
$\mathrm{R} 1 \leftarrow \mathrm{R} 2+\mathrm{R} 3$
$R 3 \leftarrow R 4+R 5$
BEQZ R1
$\mathrm{R} 1 \leftarrow \mathrm{R} 1+\mathrm{R} 3$
$\mathrm{R} 1 \leftarrow \mathrm{R} 1+\mathrm{R} 3$
$\mathrm{R} 3 \leftarrow \mathrm{R} 1+\mathrm{R} 3$
$\mathrm{R} 4 \leftarrow \mathrm{R} 3+\mathrm{R} 1$

Problem 2

- Show the renamed version of the following code: Assume that you have 36 physical registers and 32 architected registers
$\mathrm{R} 1 \leftarrow \mathrm{R} 2+\mathrm{R} 3$
$\mathrm{R} 3 \leftarrow \mathrm{R} 4+\mathrm{R} 5$
BEQZ R1
$\mathrm{R} 1 \leftarrow \mathrm{R} 1+\mathrm{R} 3$
$\mathrm{R} 1 \leftarrow \mathrm{R} 1+\mathrm{R} 3$
$\mathrm{R} 3 \leftarrow \mathrm{R} 1+\mathrm{R} 3$
$R 4 \leftarrow R 3+R 1$
$\mathrm{P} 33 \leftarrow \mathrm{P} 2+\mathrm{P} 3$
$\mathrm{P} 34 \leftarrow \mathrm{P} 4+\mathrm{P} 5$
BEQZ P33
P35 < P33+P34
P36 \leftarrow P35+P34
P1 \leftarrow P36+P34
P3 < P1+P36

Problem 3

- Show the renamed version of the following code: Assume that you have 36 physical registers and 32 architected registers. When does each instr leave the IQ?
$\mathrm{R} 1 \leftarrow \mathrm{R} 2+\mathrm{R} 3$
$\mathrm{R} 1 \leftarrow \mathrm{R} 1+\mathrm{R} 5$
BEQZ R1
$\mathrm{R} 1 \leftarrow \mathrm{R} 4+\mathrm{R} 5$
$\mathrm{R} 4 \leftarrow \mathrm{R} 1+\mathrm{R} 7$
$\mathrm{R} 1 \leftarrow \mathrm{R} 6+\mathrm{R} 8$
$\mathrm{R} 4 \leftarrow \mathrm{R} 3+\mathrm{R} 1$
$\mathrm{R} 1 \leftarrow \mathrm{R} 5+\mathrm{R} 9$

Problem 3

- Show the renamed version of the following code: Assume that you have 36 physical registers and 32 architected registers. When does each instr leave the IQ?

$\mathrm{R} 1 \leftarrow \mathrm{R} 2+\mathrm{R} 3$	$\mathrm{P} 33 \leftarrow \mathrm{P} 2+\mathrm{P} 3$	cycle i
$\mathrm{R} 1 \leftarrow \mathrm{R} 1+\mathrm{R} 5$	$\mathrm{P} 34 \leftarrow \mathrm{P} 33+\mathrm{P} 5$	i+1
BEQZ R1	BEQZ P34	i+2
$\mathrm{R} 1 \leftarrow \mathrm{R} 4+\mathrm{R} 5$	P35 \leftarrow ¢ 4 4+P5	I
$\mathrm{R} 4 \leftarrow \mathrm{R} 1+\mathrm{R} 7$	$\mathrm{P} 36 \leftarrow \mathrm{P} 35+\mathrm{P} 7$	i+1
$\mathrm{R} 1 \leftarrow \mathrm{R} 6+\mathrm{R} 8$	$\mathrm{P} 1 \leftarrow \mathrm{P} 6+\mathrm{P} 8$	j
$\mathrm{R} 4 \leftarrow \mathrm{R} 3+\mathrm{R} 1$	$\mathrm{P} 33 \leftarrow \mathrm{P} 3+\mathrm{P} 1$	j+1
$\mathrm{R} 1 \leftarrow \mathrm{R} 5+\mathrm{R} 9$	$\mathrm{P} 34 \leftarrow \mathrm{P} 5+\mathrm{P} 9$	+2

Width is assumed to be 4.
j depends on the \#stages between issue and commit.

OOO Example

- Assume there are 36 physical registers and 32 logical registers, and width is 4
- Estimate the issue time, completion time, and commit time for the sample code

Assumptions

\square

\square

- Perfect branch prediction, instruction fetch, caches
- ADD \rightarrow dep has no stall; LD \rightarrow dep has one stall
- An instr is placed in the IQ at the end of its $5^{\text {th }}$ stage, an instr takes 5 more stages after leaving the IQ (Id/st instrs take 6 more stages after leaving the IQ)

OOO Example

Original code
ADD R1, R2, R3
LD R2, 8(R1)
ADD R2, R2, 8
ST R1, (R3)
SUB R1, R1, R5
LD R1, 8(R2)
ADD R1, R1, R2

OOO Example

Original code ADD R1, R2, R3
LD R2, 8(R1)
ADD R2, R2, 8
ST R1, (R3)
SUB R1, R1, R5
LD R1, 8(R2) Must wait ADD R1, R1, R2

Renamed code ADD P33, P2, P3
LD P34, 8(P33)
ADD P35, P34, 8
ST P33, (P3)
SUB P36, P33, P5

OOO Example

\square

\square

Original code
ADD R1, R2, R3
LD R2, 8(R1)
ADD R2, R2, 8
ST R1, (R3)
SUB R1, R1, R5
LD R1, 8(R2)
ADD R1, R1, R2

Renamed code
ADD P33, P2, P3
LD P34, 8(P33)
ADD P35, P34, 8
ST P33, (P3)
SUB P36, P33, P5

OOO Example

Original code
ADD R1, R2, R3
LD R2, 8(R1)
ADD R2, R2, 8
ST R1, (R3)
SUB R1, R1, R5
LD R1, 8(R2)
ADD R1, R1, R2

Renamed code
ADD P33, P2, P3
LD P34, 8(P33)
ADD P35, P34, 8
ST P33, (P3)
SUB P36, P33, P5

InQ Iss Comp Comm
$\begin{array}{llll}\text { i } & i+1 & i+6 & i+6\end{array}$
i $\quad \mathrm{i}+2$ i+8 $\quad i+8$
i $\quad i+4 \quad i+9 \quad i+9$
$\begin{array}{llll}i & i+2 & i+8 & i+9\end{array}$
$\begin{array}{lll}i+1 & i+2 & i+7\end{array} \quad i+9$

OOO Example

Original code ADD R1, R2, R3 LD R2, 8(R1) ADD R2, R2, 8 ST R1, (R3)
SUB R1, R1, R5 LD R1, 8(R2)
ADD R1, R1, R2

Renamed code
ADD P33, P2, P3
LD P34, 8(P33)
ADD P35, P34, 8
ST P33, (P3)
SUB P36, P33, P5
LD P1, 8(P35)
ADD P2, P1, P35

InQ Iss Comp Comm
i i+1 i+6 i+6
i $\quad \mathrm{i}+2 \quad$ i+8 $\quad i+8$
$\begin{array}{llll}i & i+4 & i+9 & i+9\end{array}$
$\begin{array}{llll}i & i+2 & i+8 & i+9\end{array}$
$\begin{array}{llll}i+1 & i+2 & i+7 & i+9\end{array}$
$i+7 \quad i+8 \quad i+14 \quad i+14$
$i+9 \quad i+10 i+15 \quad i+15$

Title

- Bullet

