
Lecture: Static ILP

• Topics: predication, speculation (Sections C.5, 3.2)
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Software Pipeline?!
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Loop:     L.D         F0, 0(R1)       
ADD.D    F4, F0, F2     
S.D         F4, 0(R1)       
DADDUI  R1, R1,# -8  
BNE        R1, R2, Loop 
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Software Pipeline
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Software Pipelining

Loop:     L.D         F0, 0(R1)       
ADD.D    F4, F0, F2     
S.D         F4, 0(R1)       
DADDUI  R1, R1,# -8  
BNE        R1, R2, Loop 

Loop:     S.D         F4, 16(R1)       
ADD.D    F4, F0, F2     
L.D          F0, 0(R1)       
DADDUI  R1, R1,# -8  
BNE        R1, R2, Loop 

• Advantages: achieves nearly the same effect as loop unrolling, but
without the code expansion – an unrolled loop may have inefficiencies
at the start and end of each iteration, while a sw-pipelined loop is
almost always in steady state – a sw-pipelined loop can also be unrolled
to reduce loop overhead

• Disadvantages: does not reduce loop overhead, may require more
registers
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Problem 4

for (i=1000; i>0; i--)
x[i] = y[i] * s;

Loop:     L.D         F0, 0(R1)          ; F0 = array element
MUL.D    F4, F0, F2        ; multiply scalar
S.D         F4, 0(R2)          ; store result
DADDUI  R1, R1,# -8      ; decrement address pointer
DADDUI  R2, R2,#-8       ; decrement address pointer
BNE        R1, R3, Loop    ; branch if R1 != R3
NOP

Source code

Assembly code

LD -> any : 1 stall
FPMUL -> any: 5 stalls
FPMUL -> ST : 4 stalls
IntALU -> BR : 1 stall

• Show the SW pipelined version of the code and does it cause stalls?
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Problem 4

for (i=1000; i>0; i--)
x[i] = y[i] * s;

Loop:     L.D         F0, 0(R1)          ; F0 = array element
MUL.D    F4, F0, F2        ; multiply scalar
S.D         F4, 0(R2)          ; store result
DADDUI  R1, R1,# -8      ; decrement address pointer
DADDUI  R2, R2,#-8       ; decrement address pointer
BNE        R1, R3, Loop    ; branch if R1 != R3
NOP

Source code

Assembly code

LD -> any : 1 stall
FPMUL -> any: 5 stalls
FPMUL -> ST : 4 stalls
IntALU -> BR : 1 stall

• Show the SW pipelined version of the code and does it cause stalls?

Loop:  S.D      F4, 0(R2)
MUL    F4, F0, F2
L.D      F0, 0(R1)
DADDUI R2, R2, #-8
BNE        R1, R3, Loop
DADDUI R1, R1, #-8            There will be no stalls 6



Predication

• A branch within a loop can be problematic to schedule

• Control dependences are a problem because of the need
to re-fetch on a mispredict

• For short loop bodies, control dependences can be
converted to data dependences by using 
predicated/conditional instructions
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Predicated or Conditional Instructions

if (R1 == 0) 
R2 = R2 + R4

else 
R6 = R3 + R5
R4 = R2 + R3

R7 = !R1 
R8 = R2 
R2 = R2 + R4   (predicated on R7)
R6 = R3 + R5   (predicated on R1)
R4 = R8 + R3   (predicated on R1) 
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Predicated or Conditional Instructions

• The instruction has an additional operand that determines
whether the instr completes or gets converted into a no-op

• Example: lwc  R1, 0(R2), R3    (load-word-conditional)
will load the word at address (R2) into R1 if R3 is non-zero;
if R3 is zero, the instruction becomes a no-op

• Replaces a control dependence with a data dependence
(branches disappear) ; may need register copies for the
condition or for values used by both directions

if (R1 == 0) 
R2 = R2 + R4

else 
R6 = R3 + R5
R4 = R2 + R3

R7 = !R1 ;  R8 = R2 ;
R2 = R2 + R4   (predicated on R7)
R6 = R3 + R5   (predicated on R1)
R4 = R8 + R3   (predicated on R1) 
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Problem 1

• Use predication to remove control hazards in this code

if (R1 == 0) 
R2 = R5 + R4
R3 = R2 + R4

else 
R6 = R3 + R2
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Problem 1

• Use predication to remove control hazards in this code

if (R1 == 0) 
R2 = R5 + R4
R3 = R2 + R4

else 
R6 = R3 + R2

R7 = !R1 ;
R6 = R3 + R2   (predicated on R1)
R2 = R5 + R4   (predicated on R7)
R3 = R2 + R4   (predicated on R7)
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Complications

• Each instruction has one more input operand – more
register ports/bypassing

• If the branch condition is not known, the instruction stalls
(remember, these are in-order processors)

• Some implementations allow the instruction to continue
without the branch condition and squash/complete later in
the pipeline – wasted work

• Increases register pressure, activity on functional units

• Does not help if the br-condition takes a while to evaluate
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Support for Speculation

• In general, when we re-order instructions, register renaming
can ensure we do not violate register data dependences

• However, we need hardware support
 to ensure that an exception is raised at the correct point
 to ensure that we do not violate memory dependences

st
br

ld
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Detecting Exceptions

• Some exceptions require that the program be terminated
(memory protection violation), while other exceptions
require execution to resume (page faults)

• For a speculative instruction, in the latter case, servicing 
the exception only implies potential performance loss

• In the former case, you want to defer servicing the
exception until you are sure the instruction is not speculative

• Note that a speculative instruction needs a special opcode
to indicate that it is speculative
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Program-Terminate Exceptions

• When a speculative instruction experiences an exception,
instead of servicing it, it writes a special NotAThing value
(NAT) in the destination register

• If a non-speculative instruction reads a NAT, it flags the
exception and the program terminates (it may not be
desireable that the error is caused by an array access, but
the segfault happens two procedures later)

• Alternatively, an instruction (the sentinel) in the speculative
instruction’s original location checks the register value and
initiates recovery
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Memory Dependence Detection

• If a load is moved before a preceding store, we must
ensure that the store writes to a non-conflicting address,
else, the load has to re-execute

• When the speculative load issues, it stores its address in
a table (Advanced Load Address Table in the IA-64)

• If a store finds its address in the ALAT, it indicates that a
violation occurred for that address

• A special instruction (the sentinel) in the load’s original
location checks to see if the address had a violation and 
re-executes the load if necessary
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Problem 2

• For the example code snippet below, show the code after
the load is hoisted:

Instr-A
Instr-B
ST  R2  [R3]
Instr-C
BEZ R7, foo
Instr-D
LD R8  [R4]
Instr-E
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Problem 2

• For the example code snippet below, show the code after
the load is hoisted:

LD.S R8  [R4]
Instr-A                                            Instr-A
Instr-B                                            Instr-B
ST  R2  [R3]                               ST R2  [R3]
Instr-C                                            Instr-C
BEZ R7, foo                                   BEZ R7, foo
Instr-D                                            Instr-D
LD R8  [R4]                              LD.C  R8, rec-code
Instr-E                                           Instr-E

rec-code: LD R8  [R4] 18



Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)
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Principle of Locality

• Most programs are predictable in terms of instructions
executed and data accessed

• The 90-10 Rule: a program spends 90% of its execution
time in only 10% of the code

• Temporal locality: a program will shortly re-visit  X

• Spatial locality: a program will shortly visit  X+1
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Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?
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Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?

The index is 12 bits wide, so the table has 2^12 saturating
counters.  Each counter is 3 bits wide.  So total storage
= 3 * 4096 = 12 Kb  or 1.5 KB
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Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC 

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history.  The L2 uses 2-bit counters.
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Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC 

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history.  The L2 uses 2-bit counters.

Selector = 4K * 2b = 8 Kb
Global = 3b * 2^14 = 48 Kb
Local = (12b * 2^8) + (2b * 2^12) = 3 Kb + 8 Kb = 11 Kb
Total = 67 Kb  
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Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)
25



Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)

PC+4:  2/13 = 15%
1b Bim: (2+6+1)/(4+8+1) 

= 9/13 = 69%
2b Bim: (3+7+1)/13

= 11/13 = 85%
Global: (4+7+1)/13

= 12/13 = 92%
(gets confused by 01111
unless you take branch-PC
into account while indexing)
Local: (4+7+1)/13

= 12/13 = 92%
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Title

• Bullet
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