
Lecture: Static ILP

• Topics: predication, speculation (Sections C.5, 3.2)

1

Software Pipeline?!

L.D ADD.D S.D

DADDUI BNE

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D

L.D ADD.D

DADDUI BNE

DADDUI BNE

DADDUI BNE

DADDUI BNE

DADDUI BNE

…

…

Loop: L.D F0, 0(R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
DADDUI R1, R1,# -8
BNE R1, R2, Loop

2

Software Pipeline

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D S.D

L.D ADD.D

L.D

Original iter 1

Original iter 2

Original iter 3

Original iter 4

New iter 1

New iter 2

New iter 3

New iter 4

3

Software Pipelining

Loop: L.D F0, 0(R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
DADDUI R1, R1,# -8
BNE R1, R2, Loop

Loop: S.D F4, 16(R1)
ADD.D F4, F0, F2
L.D F0, 0(R1)
DADDUI R1, R1,# -8
BNE R1, R2, Loop

• Advantages: achieves nearly the same effect as loop unrolling, but
without the code expansion – an unrolled loop may have inefficiencies
at the start and end of each iteration, while a sw-pipelined loop is
almost always in steady state – a sw-pipelined loop can also be unrolled
to reduce loop overhead

• Disadvantages: does not reduce loop overhead, may require more
registers

4

Problem 4

for (i=1000; i>0; i--)
x[i] = y[i] * s;

Loop: L.D F0, 0(R1) ; F0 = array element
MUL.D F4, F0, F2 ; multiply scalar
S.D F4, 0(R2) ; store result
DADDUI R1, R1,# -8 ; decrement address pointer
DADDUI R2, R2,#-8 ; decrement address pointer
BNE R1, R3, Loop ; branch if R1 != R3
NOP

Source code

Assembly code

LD -> any : 1 stall
FPMUL -> any: 5 stalls
FPMUL -> ST : 4 stalls
IntALU -> BR : 1 stall

• Show the SW pipelined version of the code and does it cause stalls?

5

Problem 4

for (i=1000; i>0; i--)
x[i] = y[i] * s;

Loop: L.D F0, 0(R1) ; F0 = array element
MUL.D F4, F0, F2 ; multiply scalar
S.D F4, 0(R2) ; store result
DADDUI R1, R1,# -8 ; decrement address pointer
DADDUI R2, R2,#-8 ; decrement address pointer
BNE R1, R3, Loop ; branch if R1 != R3
NOP

Source code

Assembly code

LD -> any : 1 stall
FPMUL -> any: 5 stalls
FPMUL -> ST : 4 stalls
IntALU -> BR : 1 stall

• Show the SW pipelined version of the code and does it cause stalls?

Loop: S.D F4, 0(R2)
MUL F4, F0, F2
L.D F0, 0(R1)
DADDUI R2, R2, #-8
BNE R1, R3, Loop
DADDUI R1, R1, #-8 There will be no stalls 6

Predication

• A branch within a loop can be problematic to schedule

• Control dependences are a problem because of the need
to re-fetch on a mispredict

• For short loop bodies, control dependences can be
converted to data dependences by using
predicated/conditional instructions

7

Predicated or Conditional Instructions

if (R1 == 0)
R2 = R2 + R4

else
R6 = R3 + R5
R4 = R2 + R3

R7 = !R1
R8 = R2
R2 = R2 + R4 (predicated on R7)
R6 = R3 + R5 (predicated on R1)
R4 = R8 + R3 (predicated on R1)

8

Predicated or Conditional Instructions

• The instruction has an additional operand that determines
whether the instr completes or gets converted into a no-op

• Example: lwc R1, 0(R2), R3 (load-word-conditional)
will load the word at address (R2) into R1 if R3 is non-zero;
if R3 is zero, the instruction becomes a no-op

• Replaces a control dependence with a data dependence
(branches disappear) ; may need register copies for the
condition or for values used by both directions

if (R1 == 0)
R2 = R2 + R4

else
R6 = R3 + R5
R4 = R2 + R3

R7 = !R1 ; R8 = R2 ;
R2 = R2 + R4 (predicated on R7)
R6 = R3 + R5 (predicated on R1)
R4 = R8 + R3 (predicated on R1)

9

Problem 1

• Use predication to remove control hazards in this code

if (R1 == 0)
R2 = R5 + R4
R3 = R2 + R4

else
R6 = R3 + R2

10

Problem 1

• Use predication to remove control hazards in this code

if (R1 == 0)
R2 = R5 + R4
R3 = R2 + R4

else
R6 = R3 + R2

R7 = !R1 ;
R6 = R3 + R2 (predicated on R1)
R2 = R5 + R4 (predicated on R7)
R3 = R2 + R4 (predicated on R7)

11

Complications

• Each instruction has one more input operand – more
register ports/bypassing

• If the branch condition is not known, the instruction stalls
(remember, these are in-order processors)

• Some implementations allow the instruction to continue
without the branch condition and squash/complete later in
the pipeline – wasted work

• Increases register pressure, activity on functional units

• Does not help if the br-condition takes a while to evaluate
12

Support for Speculation

• In general, when we re-order instructions, register renaming
can ensure we do not violate register data dependences

• However, we need hardware support
 to ensure that an exception is raised at the correct point
 to ensure that we do not violate memory dependences

st
br

ld
13

Detecting Exceptions

• Some exceptions require that the program be terminated
(memory protection violation), while other exceptions
require execution to resume (page faults)

• For a speculative instruction, in the latter case, servicing
the exception only implies potential performance loss

• In the former case, you want to defer servicing the
exception until you are sure the instruction is not speculative

• Note that a speculative instruction needs a special opcode
to indicate that it is speculative

14

Program-Terminate Exceptions

• When a speculative instruction experiences an exception,
instead of servicing it, it writes a special NotAThing value
(NAT) in the destination register

• If a non-speculative instruction reads a NAT, it flags the
exception and the program terminates (it may not be
desireable that the error is caused by an array access, but
the segfault happens two procedures later)

• Alternatively, an instruction (the sentinel) in the speculative
instruction’s original location checks the register value and
initiates recovery

15

Memory Dependence Detection

• If a load is moved before a preceding store, we must
ensure that the store writes to a non-conflicting address,
else, the load has to re-execute

• When the speculative load issues, it stores its address in
a table (Advanced Load Address Table in the IA-64)

• If a store finds its address in the ALAT, it indicates that a
violation occurred for that address

• A special instruction (the sentinel) in the load’s original
location checks to see if the address had a violation and
re-executes the load if necessary

16

Problem 2

• For the example code snippet below, show the code after
the load is hoisted:

Instr-A
Instr-B
ST R2 [R3]
Instr-C
BEZ R7, foo
Instr-D
LD R8 [R4]
Instr-E

17

Problem 2

• For the example code snippet below, show the code after
the load is hoisted:

LD.S R8 [R4]
Instr-A Instr-A
Instr-B Instr-B
ST R2 [R3] ST R2 [R3]
Instr-C Instr-C
BEZ R7, foo BEZ R7, foo
Instr-D Instr-D
LD R8 [R4] LD.C R8, rec-code
Instr-E Instr-E

rec-code: LD R8 [R4] 18

Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)

19

Principle of Locality

• Most programs are predictable in terms of instructions
executed and data accessed

• The 90-10 Rule: a program spends 90% of its execution
time in only 10% of the code

• Temporal locality: a program will shortly re-visit X

• Spatial locality: a program will shortly visit X+1

20

Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?

21

Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?

The index is 12 bits wide, so the table has 2^12 saturating
counters. Each counter is 3 bits wide. So total storage
= 3 * 4096 = 12 Kb or 1.5 KB

22

Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history. The L2 uses 2-bit counters.

23

Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history. The L2 uses 2-bit counters.

Selector = 4K * 2b = 8 Kb
Global = 3b * 2^14 = 48 Kb
Local = (12b * 2^8) + (2b * 2^12) = 3 Kb + 8 Kb = 11 Kb
Total = 67 Kb

24

Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)
25

Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)

PC+4: 2/13 = 15%
1b Bim: (2+6+1)/(4+8+1)

= 9/13 = 69%
2b Bim: (3+7+1)/13

= 11/13 = 85%
Global: (4+7+1)/13

= 12/13 = 92%
(gets confused by 01111
unless you take branch-PC
into account while indexing)
Local: (4+7+1)/13

= 12/13 = 92%
26

Title

• Bullet

27

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

