
Lecture 2: Metrics to Evaluate Systems

• Topics: Metrics: power, reliability, cost,
benchmark suites, performance equation,
summarizing performance with AM, GM, HM

• Sign up for the class mailing list!

 Video 1: Using AM as a performance summary
 Video 2: GM, Performance Equation
 Video 3: AM vs. HM vs. GM

1

Power Consumption Trends

• Dyn power α activity x capacitance x voltage2 x frequency

• Capacitance per transistor and voltage are decreasing,
but number of transistors is increasing at a faster rate;
hence clock frequency must be kept steady

• Leakage power is also rising; is a function of transistor
count, leakage current, and supply voltage

• Power consumption is already between 100-150W in
high-performance processors today

• Energy = power x time = (dynpower + lkgpower) x time
2

Problem 1

• For a processor running at 100% utilization at 100 W,
20% of the power is attributed to leakage. What is the
total power dissipation when the processor is running at
50% utilization?

3

Problem 1

• For a processor running at 100% utilization at 100 W,
20% of the power is attributed to leakage. What is the
total power dissipation when the processor is running at
50% utilization?

Total power = dynamic power + leakage power
= 80W x 50% + 20W
= 60W

4

Power Vs. Energy

• Energy is the ultimate metric: it tells us the true “cost” of
performing a fixed task

• Power (energy/time) poses constraints; can only work fast
enough to max out the power delivery or cooling solution

• If processor A consumes 1.2x the power of processor B,
but finishes the task in 30% less time, its relative energy
is 1.2 X 0.7 = 0.84; Proc-A is better, assuming that 1.2x
power can be supported by the system

5

Problem 2

• If processor A consumes 1.4x the power of processor B,
but finishes the task in 20% less time, which processor
would you pick:

(a) if you were constrained by power delivery constraints?
(b) if you were trying to minimize energy per operation?
(c) if you were trying to minimize response times?

6

Problem 2

• If processor A consumes 1.4x the power of processor B,
but finishes the task in 20% less time, which processor
would you pick:

(a) if you were constrained by power delivery constraints?
Proc-B

(b) if you were trying to minimize energy per operation?
Proc-A is 1.4x0.8 = 1.12 times the energy of Proc-B

(c) if you were trying to minimize response times?
Proc-A is faster, but we could scale up the frequency
(and power) of Proc-B and match Proc-A’s response
time (while still doing better in terms of power and
energy)

7

Reducing Power and Energy

• Can gate off transistors that are inactive (reduces leakage)

• Design for typical case and throttle down when activity
exceeds a threshold

• DFS: Dynamic frequency scaling -- only reduces frequency
and dynamic power, but hurts energy

• DVFS: Dynamic voltage and frequency scaling – can reduce
voltage and frequency by (say) 10%; can slow a program
by (say) 8%, but reduce dynamic power by 27%, reduce
total power by (say) 23%, reduce total energy by 17%
(Note: voltage drop slow transistor freq drop)

8

Problem 3

• Processor-A at 3 GHz consumes 80 W of dynamic power
and 20 W of static power. It completes a program in 20
seconds.
What is the energy consumption if I scale frequency down
by 20%?

What is the energy consumption if I scale frequency and
voltage down by 20%?

9

Problem 3

• Processor-A at 3 GHz consumes 80 W of dynamic power
and 20 W of static power. It completes a program in 20
seconds.
What is the energy consumption if I scale frequency down
by 20%?
New dynamic power = 64W; New static power = 20W
New execution time = 25 secs (assuming CPU-bound)
Energy = 84 W x 25 secs = 2100 Joules

What is the energy consumption if I scale frequency and
voltage down by 20%?
New DP = 41W; New static power = 16W;
New exec time = 25 secs; Energy = 1425 Joules

10

Other Technology Trends

• DRAM density increases by 40-60% per year, latency has
reduced by 33% in 10 years (the memory wall!), bandwidth
improves twice as fast as latency decreases

• Disk density improves by 100% every year, latency
improvement similar to DRAM

• Emergence of NVRAM technologies that can provide a
bridge between DRAM and hard disk drives

• Also, growing concerns over reliability (since transistors
are smaller, operating at low voltages, and there are so
many of them)

11

Defining Reliability and Availability

• A system toggles between
 Service accomplishment: service matches specifications
 Service interruption: services deviates from specs

• The toggle is caused by failures and restorations

• Reliability measures continuous service accomplishment
and is usually expressed as mean time to failure (MTTF)

• Availability measures fraction of time that service matches
specifications, expressed as MTTF / (MTTF + MTTR)

12

Cost

• Cost is determined by many factors: volume, yield,
manufacturing maturity, processing steps, etc.

• One important determinant: area of the chip

• Small area more chips per wafer

• Small area one defect leads us to discard a small-area
chip, i.e., yield goes up

• Roughly speaking, half the area one-third the cost

13

Measuring Performance

• Two primary metrics: wall clock time (response time for a
program) and throughput (jobs performed in unit time)

• To optimize throughput, must ensure that there is minimal
waste of resources

14

Benchmark Suites

• Performance is measured with benchmark suites: a
collection of programs that are likely relevant to the user

 SPEC CPU 2006: cpu-oriented programs (for desktops)
 SPECweb, TPC: throughput-oriented (for servers)
 EEMBC: for embedded processors/workloads

15

Summarizing Performance

• Consider 25 programs from a benchmark set – how do
we capture the behavior of all 25 programs with a
single number?

P1 P2 P3
Sys-A 10 8 25
Sys-B 12 9 20
Sys-C 8 8 30

 Sum of execution times (AM)
 Sum of weighted execution times (AM)
 Geometric mean of execution times (GM)

16

Problem 4

• Consider 3 programs from a benchmark set. Assume that
system-A is the reference machine. How does the
performance of system-C compare against that of
system-B (for all 3 metrics)?

P1 P2 P3
Sys-A 5 10 20
Sys-B 6 8 18
Sys-C 7 9 14

 Sum of execution times (AM)
 Sum of weighted execution times (AM)
 Geometric mean of execution times (GM)

17

Problem 4

• Consider 3 programs from a benchmark set. Assume that
system-A is the reference machine. How does the
performance of system-C compare against that of
system-B (for all 3 metrics)?

P1 P2 P3 S.E.T S.W.E.T GM
Sys-A 5 10 20 35 3 10
Sys-B 6 8 18 32 2.9 9.5
Sys-C 7 9 14 30 3 9.6

 Relative to C, B provides a speedup of 1.03 (S.W.E.T)
or 1.01 (GM) or 0.94 (S.E.T)

 Relative to C, B reduces execution time by
3.3% (S.W.E.T) or 1% (GM) or -6.7% (S.E.T)

18

Sum of Weighted Exec Times – Example

• We fixed a reference machine X and ran 4 programs
A, B, C, D on it such that each program ran for 1 second

• The exact same workload (the four programs execute
the same number of instructions that they did on
machine X) is run on a new machine Y and the
execution times for each program are 0.8, 1.1, 0.5, 2

• With AM of normalized execution times, we can conclude
that Y is 1.1 times slower than X – perhaps, not for all
workloads, but definitely for one specific workload (where
all programs run on the ref-machine for an equal #cycles)

19

GM Example

Computer-A Computer-B Computer-C
P1 1 sec 10 secs 20 secs
P2 1000 secs 100 secs 20 secs

Conclusion with GMs: (i) A=B
(ii) C is ~1.6 times faster

• For (i) to be true, P1 must occur 100 times for every
occurrence of P2

• With the above assumption, (ii) is no longer true

Hence, GM can lead to inconsistencies
20

Summarizing Performance

• GM: does not require a reference machine, but does
not predict performance very well
 So we multiplied execution times and determined

that sys-A is 1.2x faster…but on what workload?

• AM: does predict performance for a specific workload,
but that workload was determined by executing
programs on a reference machine
 Every year or so, the reference machine will have

to be updated

21

CPU Performance Equation

• Clock cycle time = 1 / clock speed

• CPU time = clock cycle time x cycles per instruction x
number of instructions

• Influencing factors for each:
 clock cycle time: technology and pipeline
 CPI: architecture and instruction set design
 instruction count: instruction set design and compiler

• CPI (cycles per instruction) or IPC (instructions per cycle)
can not be accurately estimated analytically

22

Problem 5

• My new laptop has an IPC that is 20% worse than my old
laptop. It has a clock speed that is 30% higher than the old
laptop. I’m running the same binaries on both machines.
What speedup is my new laptop providing?

23

Problem 5

• My new laptop has an IPC that is 20% worse than my old
laptop. It has a clock speed that is 30% higher than the old
laptop. I’m running the same binaries on both machines.
What speedup is my new laptop providing?

Exec time = cycle time * CPI * instrs
Perf = clock speed * IPC / instrs
Speedup = new perf / old perf

= new clock speed * new IPC / old clock speed * old IPC
= 1.3 * 0.8 = 1.04

24

An Alternative Perspective - I

• Each program is assumed to run for an equal number
of cycles, so we’re fair to each program

• The number of instructions executed per cycle is a
measure of how well a program is doing on a system

• The appropriate summary measure is sum of IPCs or
AM of IPCs = 1.2 instr + 1.8 instr + 0.5 instr

cyc cyc cyc

• This measure implicitly assumes that 1 instr in prog-A
has the same importance as 1 instr in prog-B

25

An Alternative Perspective - II

• Each program is assumed to run for an equal number
of instructions, so we’re fair to each program

• The number of cycles required per instruction is a
measure of how well a program is doing on a system

• The appropriate summary measure is sum of CPIs or
AM of CPIs = 0.8 cyc + 0.6 cyc + 2.0 cyc

instr instr instr

• This measure implicitly assumes that 1 instr in prog-A
has the same importance as 1 instr in prog-B

26

AM and HM

• Note that AM of IPCs = 1 / HM of CPIs and
AM of CPIs = 1 / HM of IPCs

• So if the programs in a benchmark suite are weighted
such that each runs for an equal number of cycles, then
AM of IPCs or HM of CPIs are both appropriate measures

• If the programs in a benchmark suite are weighted such
that each runs for an equal number of instructions, then
AM of CPIs or HM of IPCs are both appropriate measures

27

AM vs. GM

• GM of IPCs = 1 / GM of CPIs

• AM of IPCs represents thruput for a workload where each
program runs sequentially for 1 cycle each; but high-IPC
programs contribute more to the AM

• GM of IPCs does not represent run-time for any real
workload (what does it mean to multiply instructions?); but
every program’s IPC contributes equally to the final measure

28

Problem 6

• My new laptop has a clock speed that is 30% higher than
the old laptop. I’m running the same binaries on both
machines. Their IPCs are listed below. I run the binaries
such that each binary gets an equal share of CPU time.
What speedup is my new laptop providing?

P1 P2 P3
Old-IPC 1.2 1.6 2.0
New-IPC 1.6 1.6 1.6

29

Problem 6

• My new laptop has a clock speed that is 30% higher than
the old laptop. I’m running the same binaries on both
machines. Their IPCs are listed below. I run the binaries
such that each binary gets an equal share of CPU time.
What speedup is my new laptop providing?

P1 P2 P3 AM GM
Old-IPC 1.2 1.6 2.0 1.6 1.57
New-IPC 1.6 1.6 1.6 1.6 1.6

AM of IPCs is the right measure. Could have also used GM.
Speedup with AM would be 1.3.

30

Speedup Vs. Percentage

• “Speedup” is a ratio = old exec time / new exec time

• “Improvement”, “Increase”, “Decrease” usually refer to
percentage relative to the baseline
= (new perf – old perf) / old perf

• A program ran in 100 seconds on my old laptop and in 70
seconds on my new laptop
What is the speedup?
What is the percentage increase in performance?
What is the reduction in execution time?

31

Speedup Vs. Percentage

• “Speedup” is a ratio = old exec time / new exec time

• “Improvement”, “Increase”, “Decrease” usually refer to
percentage relative to the baseline
= (new perf – old perf) / old perf

• A program ran in 100 seconds on my old laptop and in 70
seconds on my new laptop
What is the speedup? (1/70) / (1/100) = 1.42
What is the percentage increase in performance?

(1/70 – 1/100) / (1/100) = 42%
What is the reduction in execution time? 30%

32

Title

• Bullet

33

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33

