CS/EE 6810: Computer Architecture

- Class format:
- Most lectures on YouTube *BEFORE* class
- Use class time for discussions, clarifications, problem-solving, assignments

Introduction

- Background: CS 3810 or equivalent, based on Hennessy and Patterson's Computer Organization and Design
- Text for CS/EE 6810: Hennessy and Patterson's Computer Architecture, A Quantitative Approach, $5^{\text {th }}$ Edition
- Topics
$>$ Measuring performance/cost/power
$>$ Instruction level parallelism, dynamic and static
$>$ Memory hierarchy
$>$ Multiprocessors
$>$ Storage systems and networks

Organizational Issues

- Office hours, MEB 3414, by appointment
- TAs: Akhila Gundu, Sahil Koladiya, Shravanthi Manohar, see class webpage for office hrs
- Special accommodations, add/drop policies (see class webpage)
- Class web-page, slides, notes, and class mailing list at http://www.eng.utah.edu/~cs6810
$>$ Two exams, 25\% each
$>$ Homework assignments, 50\%, you may skip one
$>$ No tolerance for cheating

Lecture 1: Computing Trends, Metrics

- Topics: (Sections 1.1-1.5, 1.8-1.10)
$>$ Technology trends
$>$ Metrics (performance, energy, reliability)

Historical Microprocessor Performance

Source: H\&P textbook

Points to Note

- The 52% growth per year is because of faster clock speeds and architectural innovations (led to $25 x$ higher speed)
- Clock speed increases have dropped to 1\% per year in recent years
- The 22% growth includes the parallelization from multiple cores
- Moore's Law: transistors on a chip double every 18-24 months

Clock Speed Increases

Source: H\&P textbook

Recent Microprocessor Trends

Source: Micron University Symp.

Processor Technology Trends

- Transistor density increases by 35\% per year and die size increases by $10-20 \%$ per year... more functionality
- Transistor speed improves linearly with size (complex equation involving voltages, resistances, capacitances)... can lead to clock speed improvements!
- Wire delays do not scale down at the same rate as logic delays
- The power wall: it is not possible to consistently run at higher frequencies without hitting power/thermal limits (Turbo Mode can cause occasional frequency boosts)

What Helps Performance?

- Note: no increase in clock speed
- In a clock cycle, can do more work -- since transistors are faster, transistors are more energy-efficient, and there's more of them
- Better architectures: finding more parallelism in one thread, better branch prediction, better cache policies, better memory organizations, more thread-level parallelism, etc.

Where Are We Headed?

- Modern trends:
$>$ Clock speed improvements are slowing
- power constraints
> Difficult to further optimize a single core for performance
$>$ Multi-cores: each new processor generation will accommodate more cores
$>$ Need better programming models and efficient execution for multi-threaded applications
$>$ Need better memory hierarchies
$>$ Need greater energy efficiency
$>$ In some domains, wimpy cores are attractive
> Dark silicon, accelerators
> Reduced data movement

Power Consumption Trends

- Dyn power α activity x capacitance x voltage $^{2} \mathrm{x}$ frequency
- Capacitance per transistor and voltage are decreasing, but number of transistors is increasing at a faster rate; hence clock frequency must be kept steady
- Leakage power is also rising; is a function of transistor count, leakage current, and supply voltage
- Power consumption is already between 100-150W in high-performance processors today
- Energy $=$ power x time $=($ dynpower + Ikgpower $) x$ time

Power Vs. Energy

- Energy is the ultimate metric: it tells us the true "cost" of performing a fixed task
- Power (energy/time) poses constraints; can only work fast enough to max out the power delivery or cooling solution
- If processor A consumes $1.2 x$ the power of processor B , but finishes the task in 30% less time, its relative energy is $1.2 \times 0.7=0.84$; Proc-A is better, assuming that $1.2 \times$ power can be supported by the system

Reducing Power and Energy

- Can gate off transistors that are inactive (reduces leakage)
- Design for typical case and throttle down when activity exceeds a threshold
- DFS: Dynamic frequency scaling -- only reduces frequency and dynamic power, but hurts energy
- DVFS: Dynamic voltage and frequency scaling - can reduce voltage and frequency by (say) 10\%; can slow a program by (say) 8%, but reduce dynamic power by 27%, reduce total power by (say) 23\%, reduce total energy by 17% (Note: voltage drop \rightarrow slow transistor \rightarrow freq drop)

Other Technology Trends

- DRAM density increases by 40-60\% per year, latency has reduced by 33% in 10 years (the memory wall!), bandwidth improves twice as fast as latency decreases
- Disk density improves by 100% every year, latency improvement similar to DRAM
- Emergence of NVRAM technologies that can provide a bridge between DRAM and hard disk drives
- Also, growing concerns over reliability (since transistors are smaller, operating at low voltages, and there are so many of them)

Defining Reliability and Availability

- A system toggles between
> Service accomplishment: service matches specifications
$>$ Service interruption: services deviates from specs
- The toggle is caused by failures and restorations
- Reliability measures continuous service accomplishment and is usually expressed as mean time to failure (MTTF)
- Availability measures fraction of time that service matches specifications, expressed as MTTF / (MTTF + MTTR)

Cost

- Cost is determined by many factors: volume, yield, manufacturing maturity, processing steps, etc.
- One important determinant: area of the chip
- Small area $\boldsymbol{\rightarrow}$ more chips per wafer
- Small area \rightarrow one defect leads us to discard a small-area chip, i.e., yield goes up
- Roughly speaking, half the area \rightarrow one-third the cost

Title

- Bullet

