
1

Lecture 18: Coherence and Synchronization

• Topics: directory-based coherence protocols,

 synchronization primitives (Sections 5.1-5.5)

2

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track

 of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing

 status of that block – all cache controllers monitor the

 shared bus so they can update the sharing status of the

 block, if necessary

 Write-invalidate: a processor gains exclusive access of

 a block before writing by invalidating all other copies

 Write-update: when a processor writes, it updates other

 shared copies of that block

3

Directory-Based Cache Coherence

• The physical memory is distributed among all processors

• The directory is also distributed along with the

 corresponding memory

• The physical address is enough to determine the location

 of memory

• The (many) processing nodes are connected with a

 scalable interconnect (not a bus) – hence, messages

 are no longer broadcast, but routed from sender to

 receiver – since the processing nodes can no longer

 snoop, the directory keeps track of sharing state

4

Distributed Memory Multiprocessors

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Interconnection network

Directory Directory Directory Directory

5

Directory-Based Example

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Interconnection network

Directory
Directory

X

Directory

Y

A: Rd X

B: Rd X

C: Rd X

A: Wr X

A: Wr X

C: Wr X

B: Rd X

A: Rd X

A: Rd Y

B: Wr X

B: Rd Y

B: Wr X

B: Wr Y

6

Cache Block States

• What are the different states a block of memory can have

 within the directory?

• Note that we need information for each cache so that

 invalidate messages can be sent

• The block state is also stored in the cache for efficiency

• The directory now serves as the arbitrator: if multiple

 write attempts happen simultaneously, the directory

 determines the ordering

7

Directory Actions

• If block is in uncached state:

 Read miss: send data, make block shared

 Write miss: send data, make block exclusive

• If block is in shared state:

 Read miss: send data, add node to sharers list

 Write miss: send data, invalidate sharers, make excl

• If block is in exclusive state:

 Read miss: ask owner for data, write to memory, send

 data, make shared, add node to sharers list

 Data write back: write to memory, make uncached

 Write miss: ask owner for data, write to memory, send

 data, update identity of new owner, remain exclusive

8

Performance Improvements

• What determines performance on a multiprocessor:

 What fraction of the program is parallelizable?

 How does memory hierarchy performance change?

• New form of cache miss: coherence miss – such a miss

 would not have happened if another processor did not

 write to the same cache line

• False coherence miss: the second processor writes to a

 different word in the same cache line – this miss would

 not have happened if the line size equaled one word

9

Constructing Locks

• Applications have phases (consisting of many instructions)

 that must be executed atomically, without other parallel

 processes modifying the data

• A lock surrounding the data/code ensures that only one

 program can be in a critical section at a time

• The hardware must provide some basic primitives that

 allow us to construct locks with different properties

• Lock algorithms assume an underlying cache coherence

 mechanism – when a process updates a lock, other

 processes will eventually see the update

10

Synchronization

• The simplest hardware primitive that greatly facilitates

 synchronization implementations (locks, barriers, etc.)

 is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer

 memory location into register and write 1 into memory

• lock: t&s register, location

 bnz register, lock

 CS

 st location, #0

11

Caching Locks

• Spin lock: to acquire a lock, a process may enter an infinite

 loop that keeps attempting a read-modify till it succeeds

• If the lock is in memory, there is heavy bus traffic other

 processes make little forward progress

• Locks can be cached:

 cache coherence ensures that a lock update is seen

 by other processors

 the process that acquires the lock in exclusive state

 gets to update the lock first

 spin on a local copy – the external bus sees little traffic

12

Coherence Traffic for a Lock

• If every process spins on an exchange, every exchange

 instruction will attempt a write many invalidates and

 the locked value keeps changing ownership

• Hence, each process keeps reading the lock value – a read

 does not generate coherence traffic and every process

 spins on its locally cached copy

• When the lock owner releases the lock by writing a 0, other

 copies are invalidated, each spinning process generates a

 read miss, acquires a new copy, sees the 0, attempts an

 exchange (requires acquiring the block in exclusive state so

 the write can happen), first process to acquire the block in

 exclusive state acquires the lock, others keep spinning

13

Title

• Bullet

