
1 

Lecture: Memory Technology Innovations 

• Topics: state-of-the-art and upcoming changes: 

   buffer chips, 3D stacking, non-volatile cells, photonics 

 

• Multiprocessor intro 



2 

Modern Memory System 

PROC 

.. .. .. .. 

.. .. 

.. .. 

• 4 DDR3 channels 

• 64-bit data channels 

• 800 MHz channels 

• 1-2 DIMMs/channel 

• 1-4 ranks/channel 



3 

Cutting-Edge Systems 

PROC 
SMB 

.. .. 

.. .. 

• The link into the processor is narrow and high frequency 

• The Scalable Memory Buffer chip is a “router” that connects 

   to multiple DDR3 channels (wide and slow) 

• Boosts processor pin bandwidth and memory capacity 

• More expensive, high power 



4 

Future Memory Trends 

• Processor pin count is not increasing 

 

• High memory bandwidth requires high pin frequency 

 

• High memory capacity requires narrow channels per “DIMM” 

 

• 3D stacking can enable high memory capacity and high 

  channel frequency (e.g., Micron HMC) 



5 

Future Memory Cells 

• DRAM cell scaling is expected to slow down 

 

• Emerging memory cells are expected to have better scaling 

  properties and eventually higher density: phase change 

  memory (PCM), spin torque transfer (STT-RAM), etc. 

 

• PCM: heat and cool a material with elec pulses – the rate of 

  heat/cool determines if the material is crystalline/amorphous; 

  amorphous has higher resistance (i.e., no longer using 

  capacitive charge to store a bit) 

 

• Advantages: non-volatile, high density, faster than Flash/disk 

• Disadvantages: poor write latency/energy, low endurance 



6 

Silicon Photonics 

• Game-changing technology that uses light waves for 

  communication; not mature yet and high cost likely 

 

• No longer relies on pins; a few waveguides can emerge 

  from a processor 

 

• Each waveguide carries (say) 64 wavelengths of light  

  (dense wave division multiplexing – DWDM) 

 

• The signal on a wavelength can be modulated at high 

  frequency – gives very high bandwidth per waveguide  



7 

Multiprocs -- Memory Organization - I 

• Centralized shared-memory multiprocessor   or 

  Symmetric shared-memory multiprocessor (SMP) 

 

• Multiple processors connected to a single centralized 

  memory – since all processors see the same memory 

  organization  uniform memory access (UMA) 

 

• Shared-memory because all processors can access the 

  entire memory address space 

 

• Can centralized memory emerge as a bandwidth 

  bottleneck? – not if you have large caches and employ 

  fewer than a dozen processors 



8 

SMPs or Centralized Shared-Memory 

Processor 

Caches 

Processor 

Caches 

Processor 

Caches 

Processor 

Caches 

Main Memory I/O System 



9 

Multiprocs -- Memory Organization - II 

• For higher scalability, memory is distributed among 

  processors  distributed memory multiprocessors 

 

• If one processor can directly address the memory local 

  to another processor, the address space is shared  

  distributed shared-memory (DSM) multiprocessor 

 

• If memories are strictly local, we need messages to 

  communicate data  cluster of computers or multicomputers 

 

• Non-uniform memory architecture (NUMA) since local 

  memory has lower latency than remote memory 



10 

Distributed Memory Multiprocessors 

Processor 

& Caches 

Memory I/O 

Processor 

& Caches 

Memory I/O 

Processor 

& Caches 

Memory I/O 

Processor 

& Caches 

Memory I/O 

Interconnection network 



11 

Shared-Memory Vs. Message-Passing 

Shared-memory: 

• Well-understood programming model 

• Communication is implicit and hardware handles protection 

• Hardware-controlled caching 

 

Message-passing: 

• No cache coherence  simpler hardware 

• Explicit communication  easier for the programmer to 

  restructure code 

• Sender can initiate data transfer 



12 

Ocean Kernel 

Procedure Solve(A) 

begin 

  diff = done = 0; 

  while (!done) do 

      diff = 0; 

      for i  1 to n do 

         for j  1 to n do 

            temp = A[i,j]; 

            A[i,j]  0.2 * (A[i,j] + neighbors); 

            diff += abs(A[i,j] – temp); 

         end for 

      end for 

      if (diff < TOL) then done = 1; 

  end while 

end procedure  



13 

Shared Address Space Model 

int  n, nprocs; 

float  **A, diff; 

LOCKDEC(diff_lock); 

BARDEC(bar1); 

 

 

main() 

begin 

   read(n); read(nprocs); 

   A  G_MALLOC(); 

   initialize (A); 

   CREATE (nprocs,Solve,A); 

   WAIT_FOR_END (nprocs); 

end main 

procedure Solve(A) 

    int i, j, pid, done=0; 

    float temp, mydiff=0; 

    int mymin = 1 + (pid * n/procs); 

    int mymax = mymin + n/nprocs -1; 

    while (!done) do 

       mydiff = diff = 0; 

       BARRIER(bar1,nprocs); 

       for i  mymin to mymax 

          for j  1 to n do 

             … 

          endfor 

       endfor 

       LOCK(diff_lock); 

       diff += mydiff; 

       UNLOCK(diff_lock); 

       BARRIER (bar1, nprocs); 

       if (diff < TOL) then done = 1; 

       BARRIER (bar1, nprocs); 

    endwhile 



14 

Message Passing Model 

main() 

   read(n); read(nprocs); 

   CREATE (nprocs-1, Solve); 

   Solve(); 

   WAIT_FOR_END (nprocs-1); 

 

procedure Solve() 

   int i, j, pid, nn = n/nprocs, done=0; 

   float temp, tempdiff, mydiff = 0; 

   myA  malloc(…) 

   initialize(myA); 

   while (!done) do 

       mydiff = 0; 

       if (pid != 0)  

         SEND(&myA[1,0], n, pid-1, ROW); 

       if (pid != nprocs-1) 

         SEND(&myA[nn,0], n, pid+1, ROW); 

       if (pid != 0) 

         RECEIVE(&myA[0,0], n, pid-1, ROW); 

       if (pid != nprocs-1) 

         RECEIVE(&myA[nn+1,0], n, pid+1, ROW); 

 

       for i  1 to nn do 

          for j  1 to n do 

             … 

          endfor 

       endfor 

       if (pid != 0) 

         SEND(mydiff, 1, 0, DIFF); 

         RECEIVE(done, 1, 0, DONE); 

       else 

         for i  1 to nprocs-1 do 

            RECEIVE(tempdiff, 1, *, DIFF); 

            mydiff += tempdiff; 

         endfor 

         if  (mydiff < TOL)  done = 1; 

         for i  1 to nprocs-1  do 

            SEND(done, 1, I, DONE); 

         endfor 

       endif 

    endwhile 



15 

Title 

• Bullet 


