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Lecture: Cache Hierarchies 

• Topics: cache innovations (Sections B.1-B.3, 2.1) 
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Types of Cache Misses 

• Compulsory misses: happens the first time a memory 

  word is accessed – the misses for an infinite cache 

 

• Capacity misses: happens because the program touched 

   many other words before re-touching the same word – the 

   misses for a fully-associative cache 

 

• Conflict misses: happens because two words map to the 

   same location in the cache – the misses generated while 

   moving from a fully-associative to a direct-mapped cache 

 

• Sidenote: can a fully-associative cache have more misses 

  than a direct-mapped cache of the same size?  
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Reducing Miss Rate 

• Large block size – reduces compulsory misses, reduces 

  miss penalty in case of spatial locality – increases traffic 

  between different levels, space waste, and conflict misses 

 

• Large cache – reduces capacity/conflict misses – access 

  time penalty 

 

• High associativity – reduces conflict misses – rule of thumb: 

  2-way cache of capacity N/2 has the same miss rate as 

  1-way cache of capacity N – more energy 
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More Cache Basics 

• L1 caches are split as instruction and data; L2 and L3  

    are unified 

 

• The L1/L2 hierarchy can be inclusive, exclusive, or 

     non-inclusive 

 

• On a write, you can do write-allocate or write-no-allocate 

 

• On a write, you can do writeback or write-through; 

    write-back reduces traffic, write-through simplifies coherence 

 

• Reads get higher priority; writes are usually buffered 

 

• L1 does parallel tag/data access; L2/L3 does serial tag/data 
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Techniques to Reduce Cache Misses 

• Victim caches 

 

• Better replacement policies – pseudo-LRU, NRU, DRRIP 

 

• Cache compression 
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Victim Caches 

• A direct-mapped cache suffers from misses because 

  multiple pieces of data map to the same location 

 

• The processor often tries to access data that it recently 

  discarded – all discards are placed in a small victim cache 

  (4 or 8 entries) – the victim cache is checked before going 

  to L2 

 

• Can be viewed as additional associativity for a few sets 

  that tend to have the most conflicts 
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Replacement Policies 

• Pseudo-LRU: maintain a tree and keep track of which 

    side of the tree was touched more recently; simple bit ops 

 

• NRU: every block in a set has a bit; the bit is made zero 

    when the block is touched; if all are zero, make all one; 

    a block with bit set to 1 is evicted 

 

• DRRIP: use multiple (say, 3) NRU bits; incoming blocks 

    are set to a high number (say 6), so they are close to 

    being evicted;  similar to placing an incoming block near 

    the head of the LRU list instead of near the tail 
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Tolerating Miss Penalty 

• Out of order execution: can do other useful work while 

  waiting for the miss – can have multiple cache misses 

  -- cache controller has to keep track of multiple 

  outstanding misses (non-blocking cache) 

 

• Hardware and software prefetching into prefetch buffers  

  – aggressive prefetching can increase contention for buses 
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Stream Buffers 

• Simplest form of prefetch: on every miss, bring in 

   multiple cache lines 

 

• When you read the top of the queue, bring in the next line 

L1 
Stream buffer 

Sequential lines 
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Stride-Based Prefetching 

• For each load, keep track of the last address accessed 

  by the load and a possibly consistent stride 

 

• FSM detects consistent stride and issues prefetches 
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Prefetching 

• Hardware prefetching can be employed for any of the 

  cache levels 

 

• It can introduce cache pollution – prefetched data is 

  often placed in a separate prefetch buffer to avoid 

  pollution – this buffer must be looked up in parallel 

  with the cache access 

 

• Aggressive prefetching increases “coverage”, but leads 

  to a reduction in “accuracy”  wasted memory bandwidth 

 

• Prefetches must be timely: they must be issued sufficiently 

  in advance to hide the latency, but not too early (to avoid 

  pollution and eviction before use) 
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Intel Montecito Cache 

Two cores, each 

with a private 

12 MB L3 cache 

and 1 MB L2 

Naffziger et al., Journal of Solid-State Circuits, 2006 
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Intel 80-Core Prototype – Polaris 

Prototype chip with an entire 

die of SRAM cache stacked 

upon the cores 
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Example Intel Studies 

L3 Cache sizes up to 32 MB 
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Shared Vs. Private Caches in Multi-Core 

• What are the pros/cons to a shared L2 cache? 

P4 P3 P2 P1 

L1 L1 L1 L1 

L2 L2 L2 L2 

P4 P3 P2 P1 

L1 L1 L1 L1 

L2 
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Shared Vs. Private Caches in Multi-Core 

• Advantages of a shared cache: 

 Space is dynamically allocated among cores 

 No waste of space because of replication 

 Potentially faster cache coherence (and easier to 

   locate data on a miss) 

 

• Advantages of a private cache: 

 small L2  faster access time 

 private bus to L2  less contention 
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UCA and NUCA 

• The small-sized caches so far have all been uniform cache 

  access: the latency for any access is a constant, no matter 

  where data is found 

 

• For a large multi-megabyte cache, it is expensive to limit 

  access time by the worst case delay: hence, non-uniform 

  cache architecture 
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Large NUCA 

CPU 

Issues to be addressed for 

Non-Uniform Cache Access: 

 

• Mapping 

 

• Migration 

 

• Search 

 

• Replication 
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Memory Controller for off-chip access 

A single tile composed 
of a core, L1 caches, and 

a bank (slice) of the 
shared L2 cache 

The cache controller  
forwards address requests 
 to the appropriate L2 bank 

and handles coherence 
operations 

Shared NUCA Cache 
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Title 

• Bullet 


