
1

Lecture: Cache Hierarchies

• Topics: cache innovations (Sections B.1-B.3, 2.1)

2

Types of Cache Misses

• Compulsory misses: happens the first time a memory

 word is accessed – the misses for an infinite cache

• Capacity misses: happens because the program touched

 many other words before re-touching the same word – the

 misses for a fully-associative cache

• Conflict misses: happens because two words map to the

 same location in the cache – the misses generated while

 moving from a fully-associative to a direct-mapped cache

• Sidenote: can a fully-associative cache have more misses

 than a direct-mapped cache of the same size?

3

Reducing Miss Rate

• Large block size – reduces compulsory misses, reduces

 miss penalty in case of spatial locality – increases traffic

 between different levels, space waste, and conflict misses

• Large cache – reduces capacity/conflict misses – access

 time penalty

• High associativity – reduces conflict misses – rule of thumb:

 2-way cache of capacity N/2 has the same miss rate as

 1-way cache of capacity N – more energy

4

More Cache Basics

• L1 caches are split as instruction and data; L2 and L3

 are unified

• The L1/L2 hierarchy can be inclusive, exclusive, or

 non-inclusive

• On a write, you can do write-allocate or write-no-allocate

• On a write, you can do writeback or write-through;

 write-back reduces traffic, write-through simplifies coherence

• Reads get higher priority; writes are usually buffered

• L1 does parallel tag/data access; L2/L3 does serial tag/data

5

Techniques to Reduce Cache Misses

• Victim caches

• Better replacement policies – pseudo-LRU, NRU, DRRIP

• Cache compression

6

Victim Caches

• A direct-mapped cache suffers from misses because

 multiple pieces of data map to the same location

• The processor often tries to access data that it recently

 discarded – all discards are placed in a small victim cache

 (4 or 8 entries) – the victim cache is checked before going

 to L2

• Can be viewed as additional associativity for a few sets

 that tend to have the most conflicts

7

Replacement Policies

• Pseudo-LRU: maintain a tree and keep track of which

 side of the tree was touched more recently; simple bit ops

• NRU: every block in a set has a bit; the bit is made zero

 when the block is touched; if all are zero, make all one;

 a block with bit set to 1 is evicted

• DRRIP: use multiple (say, 3) NRU bits; incoming blocks

 are set to a high number (say 6), so they are close to

 being evicted; similar to placing an incoming block near

 the head of the LRU list instead of near the tail

8

Tolerating Miss Penalty

• Out of order execution: can do other useful work while

 waiting for the miss – can have multiple cache misses

 -- cache controller has to keep track of multiple

 outstanding misses (non-blocking cache)

• Hardware and software prefetching into prefetch buffers

 – aggressive prefetching can increase contention for buses

9

Stream Buffers

• Simplest form of prefetch: on every miss, bring in

 multiple cache lines

• When you read the top of the queue, bring in the next line

L1
Stream buffer

Sequential lines

10

Stride-Based Prefetching

• For each load, keep track of the last address accessed

 by the load and a possibly consistent stride

• FSM detects consistent stride and issues prefetches

init

trans

steady

no-pred

incorrect

correct

incorrect

(update stride)

correct

correct

correct

incorrect

(update stride)

incorrect

(update stride)

tag prev_addr stride state PC

11

Prefetching

• Hardware prefetching can be employed for any of the

 cache levels

• It can introduce cache pollution – prefetched data is

 often placed in a separate prefetch buffer to avoid

 pollution – this buffer must be looked up in parallel

 with the cache access

• Aggressive prefetching increases “coverage”, but leads

 to a reduction in “accuracy” wasted memory bandwidth

• Prefetches must be timely: they must be issued sufficiently

 in advance to hide the latency, but not too early (to avoid

 pollution and eviction before use)

12

Intel Montecito Cache

Two cores, each

with a private

12 MB L3 cache

and 1 MB L2

Naffziger et al., Journal of Solid-State Circuits, 2006

13

Intel 80-Core Prototype – Polaris

Prototype chip with an entire

die of SRAM cache stacked

upon the cores

14

Example Intel Studies

L3 Cache sizes up to 32 MB

C

L1

C

L1

L2

C

L1

C

L1

L2

L3 M
e

m
o
ry

 i
n
te

rf
a
c
e

C

L1

C

L1

L2

C

L1

C

L1

L2

Interconnect

IO interface

From Zhao et al.,

CMP-MSI Workshop 2007

15

Shared Vs. Private Caches in Multi-Core

• What are the pros/cons to a shared L2 cache?

P4 P3 P2 P1

L1 L1 L1 L1

L2 L2 L2 L2

P4 P3 P2 P1

L1 L1 L1 L1

L2

16

Shared Vs. Private Caches in Multi-Core

• Advantages of a shared cache:

 Space is dynamically allocated among cores

 No waste of space because of replication

 Potentially faster cache coherence (and easier to

 locate data on a miss)

• Advantages of a private cache:

 small L2 faster access time

 private bus to L2 less contention

17

UCA and NUCA

• The small-sized caches so far have all been uniform cache

 access: the latency for any access is a constant, no matter

 where data is found

• For a large multi-megabyte cache, it is expensive to limit

 access time by the worst case delay: hence, non-uniform

 cache architecture

18

Large NUCA

CPU

Issues to be addressed for

Non-Uniform Cache Access:

• Mapping

• Migration

• Search

• Replication

Core 0

L1
D$

L1
I$

 L2 $

Core 1

L1
D$

L1
I$

 L2 $

Core 2

L1
D$

L1
I$

 L2 $

Core 3

L1
D$

L1
I$

 L2 $

Core 4

L1
D$

L1
I$

 L2 $

Core 5

L1
D$

L1
I$

 L2 $

Core 6

L1
D$

L1
I$

 L2 $

Core 7

L1
D$

L1
I$

 L2 $

Memory Controller for off-chip access

A single tile composed
of a core, L1 caches, and

a bank (slice) of the
shared L2 cache

The cache controller
forwards address requests
 to the appropriate L2 bank

and handles coherence
operations

Shared NUCA Cache

20

Title

• Bullet

