
1

Lecture: Out-of-order Processors

• Topics: more ooo design details, timing, load-store queue

2

The Alpha 21264 Out-of-Order Implementation

Branch prediction

and instr fetch

R1  R1+R2

R2  R1+R3

BEQZ R2

R3  R1+R2

R1  R3+R2

Instr Fetch Queue

Decode &

Rename

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

Reorder Buffer (ROB)

P33  P1+P2

P34  P33+P3

BEQZ P34

P35  P33+P34

P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File

P1-P64

Results written to

regfile and tags

broadcast to IQ

Speculative

Reg Map

R1P36

R2P34

Committed

Reg Map

R1P1

R2P2

3

Additional Details

• When does the decode stage stall? When we either run

 out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each

 stage in a cycle. High issue width  high peak ILP

• Window size: the number of in-flight instructions in the

 pipeline. Large window size  high ILP

• No more WAR and WAW hazards because of rename

 registers – must only worry about RAW hazards

4

Branch Mispredict Recovery

• On a branch mispredict, must roll back the processor state:

 throw away IFQ contents, ROB/IQ contents after branch

• Committed map table is correct and need not be fixed

• The speculative map table needs to go back to an earlier state

• To facilitate this spec-map-table rollback, it is checkpointed

 at every branch

5

Waking Up a Dependent

• In an in-order pipeline, an instruction leaves the decode

 stage when it is known that the inputs can be correctly

 received, not when the inputs are computed

• Similarly, an instruction leaves the issue queue before its

 inputs are known, i.e., wakeup is speculative based on the

 expected latency of the producer instruction

6

Out-of-Order Loads/Stores

Ld R1  [R2]

Ld

St

Ld

Ld

What if the issue queue also had load/store instructions?

Can we continue executing instructions out-of-order?

R3  [R4]

R5  [R6]

R7  [R8]

R9[R10]

7

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• The issue queue checks for

 register dependences and

 executes instructions as soon

 as registers are ready

• Loads/stores access memory

 as well – must check for RAW,

 WAW, and WAR hazards for

 memory as well

• Hence, first check for register

 dependences to compute

 effective addresses; then check

 for memory dependences

8

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• Load and store addresses are

 maintained in program order in

 the Load/Store Queue (LSQ)

• Loads can issue if they are

 guaranteed to not have true

 dependences with earlier stores

• Stores can issue only if we are

 ready to modify memory (can not

 recover if an earlier instr raises

 an exception)

9

The Alpha 21264 Out-of-Order Implementation

Branch prediction

and instr fetch

R1  R1+R2

R2  R1+R3

BEQZ R2

R3  R1+R2

R1  R3+R2

LD R4  8[R3]

ST R4  8[R1]

Instr Fetch Queue

Decode &

Rename

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

Instr 7

Reorder Buffer (ROB)

P33  P1+P2

P34  P33+P3

BEQZ P34

P35  P33+P34

P36  P35+P34

P37  8[P35]

P37  8[P36]
Issue Queue (IQ)

ALU ALU ALU

Register File

P1-P64

Results written to

regfile and tags

broadcast to IQ

P37  [P35 + 8]

P37  [P36 + 8]

LSQ

ALU

D-Cache

Committed

Reg Map

R1P1

R2P2

Speculative

Reg Map

R1P36

R2P34

10

Title

• Bullet

