
1

Lecture: Pipelining Extensions

• Topics: control hazards, multi-cycle instructions, pipelining

 equations

2

Hazards

• Structural Hazards

• Data Hazards

• Control Hazards

3

Control Hazards

• Simple techniques to handle control hazard stalls:

 for every branch, introduce a stall cycle (note: every

 6th instruction is a branch on average!)

 assume the branch is not taken and start fetching the

 next instruction – if the branch is taken, need hardware

 to cancel the effect of the wrong-path instructions

 predict the next PC and fetch that instr – if the prediction

 is wrong, cancel the effect of the wrong-path instructions

 fetch the next instruction (branch delay slot) and

 execute it anyway – if the instruction turns out to be

 on the correct path, useful work was done – if the

 instruction turns out to be on the wrong path,

 hopefully program state is not lost

4

Branch Delay Slots

5

Multicycle Instructions

6

Effects of Multicycle Instructions

• Potentially multiple writes to the register file in a cycle

• Frequent RAW hazards

• WAW hazards (WAR hazards not possible)

• Imprecise exceptions because of o-o-o instr completion

Note: Can also increase the “width” of the processor: handle

 multiple instructions at the same time: for example, fetch

 two instructions, read registers for both, execute both, etc.

7

Precise Exceptions

• On an exception:

 must save PC of instruction where program must resume

 all instructions after that PC that might be in the pipeline

 must be converted to NOPs (other instructions continue

 to execute and may raise exceptions of their own)

 temporary program state not in memory (in other words,

 registers) has to be stored in memory

 potential problems if a later instruction has already

 modified memory or registers

• A processor that fulfils all the above conditions is said to

 provide precise exceptions (useful for debugging and of

 course, correctness)

8

Dealing with these Effects

• Multiple writes to the register file: increase the number of

 ports, stall one of the writers during ID, stall one of the

 writers during WB (the stall will propagate)

• WAW hazards: detect the hazard during ID and stall the

 later instruction

• Imprecise exceptions: buffer the results if they complete

 early or save more pipeline state so that you can return to

 exactly the same state that you left at

9

Slowdowns from Stalls

• Perfect pipelining with no hazards an instruction

 completes every cycle (total cycles ~ num instructions)

 speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by

 during which no instruction completes, and then the stalled

 instruction completes

• Total cycles = number of instructions + stall cycles

• Slowdown because of stalls = 1/ (1 + stall cycles per instr)

10

Pipelining Limits

A B C

A B C

A B C D E F

A B C D E F

Assume that there is a dependence where the final result of the

first instruction is required before starting the second instruction

Gap between indep instrs: T + Tovh

Gap between dep instrs: T + Tovh

Gap between indep instrs:

 T/3 + Tovh

Gap between dep instrs:

 T + 3Tovh

Gap between indep instrs:

 T/6 + Tovh

Gap between dep instrs:

 T + 6Tovh

11

Title

• Bullet

