
1

Lecture: Metrics to Evaluate Performance

• Topics: Benchmark suites, Performance equation,

 Summarizing performance with AM, GM, HM

 Video 1: Using AM as a performance summary

 Video 2: GM, Performance Equation

 Video 3: AM vs. HM vs. GM

2

Measuring Performance

• Two primary metrics: wall clock time (response time for a

 program) and throughput (jobs performed in unit time)

• To optimize throughput, must ensure that there is minimal

 waste of resources

3

Benchmark Suites

• Performance is measured with benchmark suites: a

 collection of programs that are likely relevant to the user

 SPEC CPU 2006: cpu-oriented programs (for desktops)

 SPECweb, TPC: throughput-oriented (for servers)

 EEMBC: for embedded processors/workloads

4

Summarizing Performance

• Consider 25 programs from a benchmark set – how do

 we capture the behavior of all 25 programs with a

 single number?

 P1 P2 P3

 Sys-A 10 8 25

 Sys-B 12 9 20

 Sys-C 8 8 30

 Sum of execution times (AM)

 Sum of weighted execution times (AM)

 Geometric mean of execution times (GM)

5

Sum of Weighted Exec Times – Example

• We fixed a reference machine X and ran 4 programs

 A, B, C, D on it such that each program ran for 1 second

• The exact same workload (the four programs execute

 the same number of instructions that they did on

 machine X) is run on a new machine Y and the

 execution times for each program are 0.8, 1.1, 0.5, 2

• With AM of normalized execution times, we can conclude

 that Y is 1.1 times slower than X – perhaps, not for all

 workloads, but definitely for one specific workload (where

 all programs run on the ref-machine for an equal #cycles)

6

Summarizing Performance

• Consider 25 programs from a benchmark set – how do

 we capture the behavior of all 25 programs with a

 single number?

 P1 P2 P3

 Sys-A 10 8 25

 Sys-B 12 9 20

 Sys-C 8 8 30

 Sum of execution times (AM)

 Sum of weighted execution times (AM)

 Geometric mean of execution times (GM)

 (may find inconsistencies here)

7

GM Example

 Computer-A Computer-B Computer-C

P1 1 sec 10 secs 20 secs

P2 1000 secs 100 secs 20 secs

Conclusion with GMs: (i) A=B

 (ii) C is ~1.6 times faster

• For (i) to be true, P1 must occur 100 times for every

 occurrence of P2

• With the above assumption, (ii) is no longer true

 Hence, GM can lead to inconsistencies

8

Summarizing Performance

• GM: does not require a reference machine, but does

 not predict performance very well

 So we multiplied execution times and determined

 that sys-A is 1.2x faster…but on what workload?

• AM: does predict performance for a specific workload,

 but that workload was determined by executing

 programs on a reference machine

 Every year or so, the reference machine will have

 to be updated

9

CPU Performance Equation

• Clock cycle time = 1 / clock speed

• CPU time = clock cycle time x cycles per instruction x

 number of instructions

• Influencing factors for each:

 clock cycle time: technology and pipeline

 CPI: architecture and instruction set design

 instruction count: instruction set design and compiler

• CPI (cycles per instruction) or IPC (instructions per cycle)

 can not be accurately estimated analytically

10

An Alternative Perspective - I

• Each program is assumed to run for an equal number

 of cycles, so we’re fair to each program

• The number of instructions executed per cycle is a

 measure of how well a program is doing on a system

• The appropriate summary measure is sum of IPCs or

 AM of IPCs = 1.2 instr + 1.8 instr + 0.5 instr

 cyc cyc cyc

• This measure implicitly assumes that 1 instr in prog-A

 has the same importance as 1 instr in prog-B

11

An Alternative Perspective - II

• Each program is assumed to run for an equal number

 of instructions, so we’re fair to each program

• The number of cycles required per instruction is a

 measure of how well a program is doing on a system

• The appropriate summary measure is sum of CPIs or

 AM of CPIs = 0.8 cyc + 0.6 cyc + 2.0 cyc

 instr instr instr

• This measure implicitly assumes that 1 instr in prog-A

 has the same importance as 1 instr in prog-B

12

AM and HM

• Note that AM of IPCs = 1 / HM of CPIs and

 AM of CPIs = 1 / HM of IPCs

• So if the programs in a benchmark suite are weighted

 such that each runs for an equal number of cycles, then

 AM of IPCs or HM of CPIs are both appropriate measures

• If the programs in a benchmark suite are weighted such

 that each runs for an equal number of instructions, then

 AM of CPIs or HM of IPCs are both appropriate measures

13

AM vs. GM

• GM of IPCs = 1 / GM of CPIs

• AM of IPCs represents thruput for a workload where each

 program runs sequentially for 1 cycle each; but high-IPC

 programs contribute more to the AM

• GM of IPCs does not represent run-time for any real

 workload (what does it mean to multiply instructions?); but

 every program’s IPC contributes equally to the final measure

14

Speedup Vs. Percentage

• “Speedup” is a ratio = old exec time / new exec time

• “Improvement”, “Increase”, “Decrease” usually refer to

 percentage relative to the baseline

 = (new perf – old perf) / old perf

• A program ran in 100 seconds on my old laptop and in 70

 seconds on my new laptop

 What is the speedup?

 What is the percentage increase in performance?

 What is the reduction in execution time?

15

Title

• Bullet

