Last Time

- Embedded networks
 - Characteristics
 - Requirements
 - Simple embedded LANs
 - Bit banged
 - SPI
 - 12C
 - LIN
 - Ethernet

Today

- CAN Bus
 - > Intro
 - Low-level stuff
 - > Frame types
 - > Arbitration
 - > Filtering
 - Higher-level protocols

Motivation

- Some new cars contain > 3 miles of wire
- Clearly inappropriate to connect all pairs of communicating entities with their own wires
 - ➤ O(n²) wires
- CAN permits everyone on the bus to talk
 - Cost ~\$3 / node
 - \$1 for CAN interface
 - \$1 for the transceiver
 - \$1 for connectors and additional board area

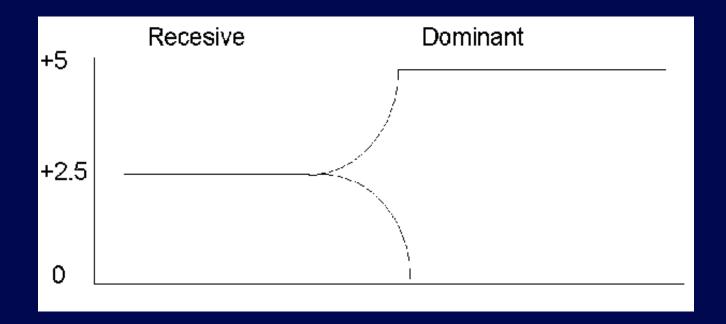
CAN Bus

- Cars commonly have multiple CAN busses
 - Physical redundancy for fault tolerance
- CAN nodes sold
 - > 200 million in 2001
 - > 300 million in 2004
 - > 400 million in 2009

What is CAN?

- Controller Area Network
 - Developed by Bosch in the late 1980s
 - Current version is 2.0, from 1991
- Multi-master serial network
- Bus network: All messages seen by all nodes
- Highly fault tolerant
- Resistant to interference
- Lossless in expected case
- Real-time guarantees can be made about CAN performance

More about CAN


- Message based, with payload size 0-8 bytes
 - Not for bulk data transfer!
 - But perfect for many embedded control applications
- Bandwidth
 - > 1 Mbps up to 40 m
 - 40 Kbps up to 1000 m
 - 5 Kbps up to 10,000 m
- CAN interfaces are usually pretty smart
 - Interrupt only after an entire message is received
 - Filter out unwanted messages in HW zero CPU load
- Many MCUs have optional onboard CAN support

CAN Bus Low Level

- CAN does not specify a physical layer
- Common PHY choice: Twisted pair with differential voltages
 - Resistant to interference
 - Can operate with degraded noise resistance when one wire is cut
 - Fiber optic also used, but not commonly
- Each node needs to be able to transmit and listen at the same time
 - Including listening to itself

Dominant and Recessive

- Bit encoding:
 - Voltage difference → "dominant" bit == logical 0
 - No voltage difference → "recessive" bit == logical 1

Bus Conflict Detection

Bus state with two nodes transmitting:

		Node 2	
		dominant	recessive
Node 1	dominant	dominant	dominant
	recessive	dominant	recessive

So:

- > When a node transmits dominant, it always hears dominant
- When a node transmits recessive and hears dominant, then there is a bus conflict
- Soon we'll see why this is important

More Low Level

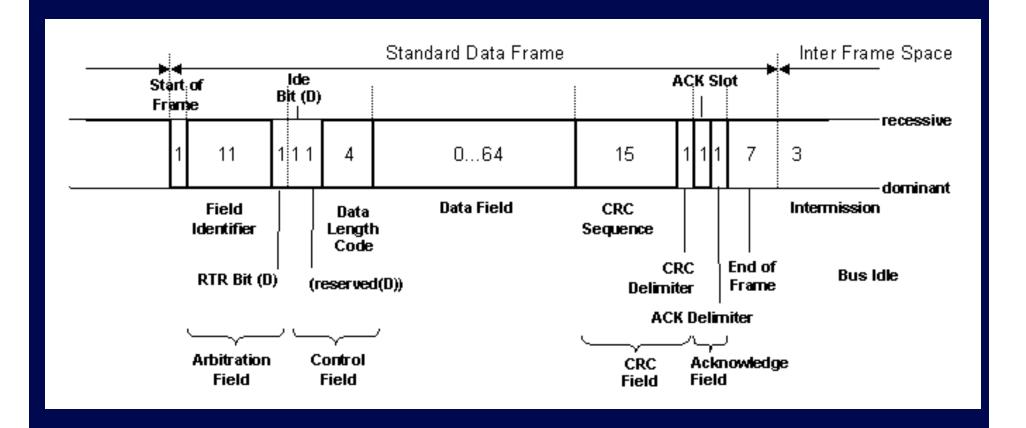
- CAN Encoding: Non-return to zero (NRZ)
 - Lots of consecutive zeros or ones leave the bus in a single state for a long time
 - In contrast, for a Manchester encoding each bit contains a transition
- NRZ problem: Not self-clocking
 - Nodes can easily lose bus synchronization
- Solution: Bit stuffing
 - After transmitting 5 consecutive bits at either dominant or recessive, transmit 1 bit of the opposite polarity
 - Receivers perform destuffing to get the original message back

CAN Clock Synchronization

- Problem: Nodes rapidly lose sync when bus is idle
 - Idle bus is all recessive no transitions
 - Bit stuffing only applies to messages
- Solution: All nodes sync to the leading edge of the "start of frame" bit of the first transmitter
- Additionally: Nodes resynchronize on every recessive to dominant edge
- Question: What degree of clock skew can by tolerated by CAN?
 - Hint: Phrase skew as ratio of fastest to slowest node clock in the network

CAN is Synchronous

- Fundamental requirement: Everyone on the bus sees the current bit before the next bit is sent
 - > This is going to permit a very clever arbitration scheme
 - Ethernet does NOT have this requirement
 - This is one reason Ethernet bandwidth can be much higher than CAN
- Let's look at time per bit:
 - Speed of electrical signal propagation 0.1-0.2 m/ns
 - **> 40 Kbps CAN bus** → **25000** ns per bit
 - A bit can travel 2500 m (max bus length 1000 m)
 - ➤ 1 Mbps CAN bus → 1000 ns per bit
 - A bit can travel 100 m (max bus length 40 m)


CAN Addressing

- Nodes do not have proper addresses
- Rather, each message has an 11-bit "field identifier"
 - In extended mode, identifiers are 29 bits
- Everyone who is interested in a message type listens for it
 - Works like this: "I'm sending an oxygen sensor reading"
 - Not like this: "I'm sending a message to node 5"
- Field identifiers also serve as message priorities
 - More on this soon

CAN Message Types

- Data frame
 - Frame containing data for transmission
- Remote frame
 - Frame requesting the transmission of a specific identifier
- Error frame
 - Frame transmitted by any node detecting an error
- Overload frame
 - Frame to inject a delay between data and/or remote frames if a receiver is not ready

CAN Data Frame

 Bit stuffing not shown here – it happens below this level

Data Frame Fields

- **♦** RTR remote transmission request
 - Always dominant for a data frame
- IDE identifier extension
 - Always dominant for 11-bit addressing
- CRC Based on a standard polynomial
- CRC delimiter Always recessive
- ACK slot This is transmitted as recessive
 - Receiver fills it in by transmitting a dominant bit
 - Sender sees this and knows that the frame was received
 - By at least one receiver
- ACK delimiter Always recessive

Remote Frame

- Same as data frame except:
 - > RTR bit set to recessive
 - > There is no data field
 - Value in data length field is ignored

Error Checking

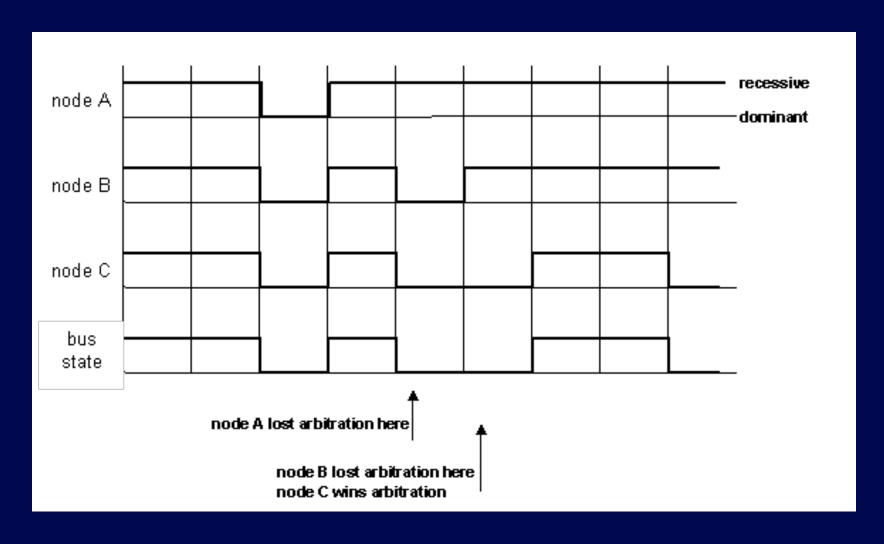
- Five different kinds of error checking are performed by all nodes
- Message-level error checking
 - Verify that checksum checks
 - Verify that someone received a message and filled in the ack slot
 - Verify that each bit that is supposed to be recessive, is
- Bit-level error checking
 - Verify that transmitted and received bits are the same
 - Except identifier and ack fields
 - Verify that the bit stuffing rule is respected

Error Handling

- Every node is in error-active or error-passive state
 - Normally in error-active
- Every node has an error counter
 - Incremented by 8 every time a node is found to be erroneous
 - Decremented by 1 every time a node transmits or receives a message correctly
- If error counter reaches 128 a node enters errorpassive state
 - Can still send and receive messages normally
- If error counter reaches 256 a node takes itself off the network

Error Frame

- Active error flag six consecutive dominant bits
 - This is sent by any active-error node detecting an error at any time during a frame transmission
 - Violates the bit stuffing rule!
 - This stomps the current frame nobody will receive it
 - Following an active error, the transmitting node will retransmit
- ◆ Passive error flag six consecutive recessive bits
 - This is "sent" by any passive-error node detecting an error
 - Unless overwritten by dominant bits from other nodes!
- After an error frame everyone transmits 8 recessive bits


Bus Arbitration

- Problem: Control access to the bus
- Ethernet solution: CSMA/CD
 - Carrier sense with multiple access anyone can transmit when the medium is idle
 - Collision detection Stomp the current packet if two nodes transmit at once
 - Why is it possible for two nodes to transmit at once?
 - Random exponential backoff to make recurring collisions unlikely
- Problems with this solution:
 - Bad worst-case behavior repeated backoffs
 - Access is not prioritized

CAN Arbitration

- Nodes can transmit when the bus is idle
- Problem is when multiple nodes transmit simultaneously
 - We want the highest-priority node to "win"
- Solution: CSMA/BA
 - Carrier sense multiple access with bitwise arbitration
- How it works:
 - Two nodes transmit start-of-frame bit
 - Nobody can detect the collision yet
 - Both nodes start transmitting message identifier
 - As soon as the identifiers differ at some bit position, the node that transmitted recessive notices and aborts the transmission

Multiple Colliding Nodes

Arbitration Continued

- Consequences:
 - Nobody but the losers see the bus conflict
 - Lowest identifier always wins the race
 - So: Message identifiers also function as priorities
- Nondestructive arbitration
 - Unlike Ethernet, collisions don't cause drops
 - This is cool!
- ◆ Maximum CAN utilization: ~100%
 - Maximum Ethernet with CSMA/CD utilization: ~37%

CAN Message Scheduling

- Network scheduling is usually non-preemptive
 - Unlike thread scheduling
 - Non-preemptive scheduling means high-priority sender must wait while low-priority sends
 - Short message length keeps this delay small
- Worst-case transmission time for 8-byte frame with an 11-bit identifier:
 - > 134 bit times
 - 134 μs at 1 Mbps

"Babbling Idiot" Error

- What happens if a CAN node goes haywire and transmits too many high priority frames?
 - This can make the bus useless
 - Assumed not to happen
- Schemes for protecting against this have been developed but are not commonly deployed
 - Most likely this happens very rarely
 - CAN bus is usually managed by hardware

CAN Hardware

- "FlexCan" seen on ColdFire chips
- 16 message buffers
 - > Each can be used for either transmit or receive
 - Buffering helps tolerate bursty traffic
- Transmission
 - Both priority order and queue order are supported
- Receiving
 - FlexCAN unit looks for a receive buffer with matching ID
 - Some ID bits can be specified as don't cares

More FlexCan

- Interrupt sources
 - Message buffer
 - 32 possibilities successful transmit / receive from each of the 16 buffers
 - > Error
 - Bus off too many errors

Higher Level Standards

- CAN leaves much unspecified
 - How to assign identifiers?
 - Endianness of data?
- Standardized higher-level protocols built on CAN:
 - CANKingdom
 - CANOpen
 - DeviceNet
 - > J1939
 - Smart Distributed System
- Similar to how
 - > TCP is built in IP
 - > HTTP is built in TCP
 - > Etc.

CANOpen

- Important device types are described by device profiles
 - Digital and analog I/O modules
 - Drives
 - > Sensors
 - > Etc.
- Profiles describe how to access data, parameters, etc.

CAN Summary

- Not the cheapest network
 - E.g., LIN bus is cheaper
- Not suitable for high-bandwidth applications
 - > E.g. in-car entertainment streaming audio and video
 - MOST Media Oriented Systems Transport
- Design point:
 - Used where reliable, timely, medium-bandwidth communication is needed
 - Real-time control of engine and other major car systems