
Last Time
u  Embedded networks

Ø  Characteristics
Ø  Requirements
Ø  Simple embedded LANs

•  Bit banged
•  SPI
•  I2C
•  LIN
•  Ethernet

Today
u  CAN Bus

Ø  Intro
Ø  Low-level stuff
Ø  Frame types
Ø  Arbitration
Ø  Filtering
Ø  Higher-level protocols

Motivation
u  Some new cars contain > 3 miles of wire

u  Clearly inappropriate to connect all pairs of
communicating entities with their own wires
Ø  O(n2) wires

u  CAN permits everyone on the bus to talk
Ø  Cost ~$3 / node

•  $1 for CAN interface
•  $1 for the transceiver
•  $1 for connectors and additional board area

CAN Bus
u  Cars commonly have multiple CAN busses

Ø  Physical redundancy for fault tolerance

u  CAN nodes sold
Ø  200 million in 2001
Ø  300 million in 2004
Ø  400 million in 2009

What is CAN?
u  Controller Area Network

Ø  Developed by Bosch in the late 1980s
Ø  Current version is 2.0, from 1991

u  Multi-master serial network
u  Bus network: All messages seen by all nodes
u  Highly fault tolerant
u  Resistant to interference
u  Lossless in expected case
u  Real-time guarantees can be made about CAN

performance

More about CAN
u  Message based, with payload size 0-8 bytes

Ø  Not for bulk data transfer!
Ø  But perfect for many embedded control applications

u  Bandwidth
Ø  1 Mbps up to 40 m
Ø  40 Kbps up to 1000 m
Ø  5 Kbps up to 10,000 m

u  CAN interfaces are usually pretty smart
Ø  Interrupt only after an entire message is received
Ø  Filter out unwanted messages in HW – zero CPU load

u  Many MCUs have optional onboard CAN support

CAN Bus Low Level
u  CAN does not specify a physical layer
u  Common PHY choice: Twisted pair with differential

voltages
Ø  Resistant to interference
Ø  Can operate with degraded noise resistance when one wire

is cut
Ø  Fiber optic also used, but not commonly

u  Each node needs to be able to transmit and listen at
the same time
Ø  Including listening to itself

Dominant and Recessive

u  Bit encoding:
Ø  Voltage difference → “dominant” bit == logical 0
Ø  No voltage difference → “recessive” bit == logical 1

Bus Conflict Detection
u  Bus state with two nodes transmitting:

u  So:
Ø  When a node transmits dominant, it always hears dominant
Ø  When a node transmits recessive and hears dominant, then

there is a bus conflict
u  Soon we’ll see why this is important

dominant recessive

dominant dominant dominant
recessive dominant recessive

Node 2

Node 1

More Low Level
u  CAN Encoding: Non-return to zero (NRZ)

Ø  Lots of consecutive zeros or ones leave the bus in a single
state for a long time

Ø  In contrast, for a Manchester encoding each bit contains a
transition

u  NRZ problem: Not self-clocking
Ø  Nodes can easily lose bus synchronization

u  Solution: Bit stuffing
Ø  After transmitting 5 consecutive bits at either dominant or

recessive, transmit 1 bit of the opposite polarity
Ø  Receivers perform destuffing to get the original message back

CAN Clock Synchronization
u  Problem: Nodes rapidly lose sync when bus is idle

Ø  Idle bus is all recessive – no transitions
Ø  Bit stuffing only applies to messages

u  Solution: All nodes sync to the leading edge of the
“start of frame” bit of the first transmitter

u  Additionally: Nodes resynchronize on every
recessive to dominant edge

u  Question: What degree of clock skew can by
tolerated by CAN?
Ø  Hint: Phrase skew as ratio of fastest to slowest node clock

in the network

CAN is Synchronous
u  Fundamental requirement: Everyone on the bus sees

the current bit before the next bit is sent
Ø  This is going to permit a very clever arbitration scheme
Ø  Ethernet does NOT have this requirement

•  This is one reason Ethernet bandwidth can be much
higher than CAN

u  Let’s look at time per bit:
Ø  Speed of electrical signal propagation 0.1-0.2 m/ns
Ø  40 Kbps CAN bus → 25000 ns per bit

•  A bit can travel 2500 m (max bus length 1000 m)
Ø  1 Mbps CAN bus → 1000 ns per bit

•  A bit can travel 100 m (max bus length 40 m)

CAN Addressing
u  Nodes do not have proper addresses
u  Rather, each message has an 11-bit “field identifier”

Ø  In extended mode, identifiers are 29 bits
u  Everyone who is interested in a message type listens

for it
Ø  Works like this: “I’m sending an oxygen sensor reading”
Ø  Not like this: “I’m sending a message to node 5”

u  Field identifiers also serve as message priorities
Ø  More on this soon

CAN Message Types
u  Data frame

Ø  Frame containing data for transmission
u  Remote frame

Ø  Frame requesting the transmission of a specific identifier
u  Error frame

Ø  Frame transmitted by any node detecting an error
u  Overload frame

Ø  Frame to inject a delay between data and/or remote frames
if a receiver is not ready

CAN Data Frame

u  Bit stuffing not shown here – it happens below this
level

Data Frame Fields
u  RTR – remote transmission request

Ø  Always dominant for a data frame
u  IDE – identifier extension

Ø  Always dominant for 11-bit addressing
u  CRC – Based on a standard polynomial
u  CRC delimiter – Always recessive
u  ACK slot – This is transmitted as recessive

Ø  Receiver fills it in by transmitting a dominant bit
Ø  Sender sees this and knows that the frame was received

•  By at least one receiver
u  ACK delimiter – Always recessive

Remote Frame
u  Same as data frame except:

Ø  RTR bit set to recessive
Ø  There is no data field
Ø  Value in data length field is ignored

Error Checking
u  Five different kinds of error checking are performed

by all nodes
u  Message-level error checking

Ø  Verify that checksum checks
Ø  Verify that someone received a message and filled in the

ack slot
Ø  Verify that each bit that is supposed to be recessive, is

u  Bit-level error checking
Ø  Verify that transmitted and received bits are the same

•  Except identifier and ack fields
Ø  Verify that the bit stuffing rule is respected

Error Handling
u  Every node is in error-active or error-passive state

Ø  Normally in error-active
u  Every node has an error counter

Ø  Incremented by 8 every time a node is found to be
erroneous

Ø  Decremented by 1 every time a node transmits or receives a
message correctly

u  If error counter reaches 128 a node enters error-
passive state
Ø  Can still send and receive messages normally

u  If error counter reaches 256 a node takes itself off
the network

Error Frame
u  Active error flag – six consecutive dominant bits

Ø  This is sent by any active-error node detecting an error at
any time during a frame transmission

Ø  Violates the bit stuffing rule!
•  This stomps the current frame – nobody will receive it

Ø  Following an active error, the transmitting node will
retransmit

u  Passive error flag – six consecutive recessive bits
Ø  This is “sent” by any passive-error node detecting an error
Ø  Unless overwritten by dominant bits from other nodes!

u  After an error frame everyone transmits 8 recessive
bits

Bus Arbitration
u  Problem: Control access to the bus
u  Ethernet solution: CSMA/CD

Ø  Carrier sense with multiple access – anyone can transmit
when the medium is idle

Ø  Collision detection – Stomp the current packet if two nodes
transmit at once

•  Why is it possible for two nodes to transmit at once?
Ø  Random exponential backoff to make recurring collisions

unlikely
u  Problems with this solution:

Ø  Bad worst-case behavior – repeated backoffs
Ø  Access is not prioritized

CAN Arbitration
u  Nodes can transmit when the bus is idle
u  Problem is when multiple nodes transmit

simultaneously
Ø  We want the highest-priority node to “win”

u  Solution: CSMA/BA
Ø  Carrier sense multiple access with bitwise arbitration

u  How it works:
Ø  Two nodes transmit start-of-frame bit

•  Nobody can detect the collision yet
Ø  Both nodes start transmitting message identifier

•  As soon as the identifiers differ at some bit position, the
node that transmitted recessive notices and aborts the
transmission

Multiple Colliding Nodes

Arbitration Continued
u  Consequences:

Ø  Nobody but the losers see the bus conflict
Ø  Lowest identifier always wins the race
Ø  So: Message identifiers also function as priorities

u  Nondestructive arbitration
Ø  Unlike Ethernet, collisions don’t cause drops
Ø  This is cool!

u  Maximum CAN utilization: ~100%
Ø  Maximum Ethernet with CSMA/CD utilization: ~37%

CAN Message Scheduling
u  Network scheduling is usually non-preemptive

Ø  Unlike thread scheduling
Ø  Non-preemptive scheduling means high-priority sender

must wait while low-priority sends
Ø  Short message length keeps this delay small

u  Worst-case transmission time for 8-byte frame with
an 11-bit identifier:
Ø  134 bit times
Ø  134 µs at 1 Mbps

“Babbling Idiot” Error
u  What happens if a CAN node goes haywire and

transmits too many high priority frames?
Ø  This can make the bus useless
Ø  Assumed not to happen

u  Schemes for protecting against this have been
developed but are not commonly deployed
Ø  Most likely this happens very rarely
Ø  CAN bus is usually managed by hardware

CAN Hardware
u  “FlexCan” seen on ColdFire chips

u  16 message buffers
Ø  Each can be used for either transmit or receive
Ø  Buffering helps tolerate bursty traffic

u  Transmission
Ø  Both priority order and queue order are supported

u  Receiving
Ø  FlexCAN unit looks for a receive buffer with matching ID
Ø  Some ID bits can be specified as don’t cares

More FlexCan
u  Interrupt sources

Ø  Message buffer
•  32 possibilities – successful transmit / receive from each

of the 16 buffers
Ø  Error
Ø  Bus off – too many errors

Higher Level Standards
u  CAN leaves much unspecified

Ø  How to assign identifiers?
Ø  Endianness of data?

u  Standardized higher-level protocols built on CAN:
Ø  CANKingdom
Ø  CANOpen
Ø  DeviceNet
Ø  J1939
Ø  Smart Distributed System

u  Similar to how
Ø  TCP is built in IP
Ø  HTTP is built in TCP
Ø  Etc.

CANOpen
u  Important device types are described by device

profiles
Ø  Digital and analog I/O modules
Ø  Drives
Ø  Sensors
Ø  Etc.

u  Profiles describe how to access data, parameters,
etc.

CAN Summary
u  Not the cheapest network

Ø  E.g., LIN bus is cheaper
u  Not suitable for high-bandwidth applications

Ø  E.g. in-car entertainment – streaming audio and video
Ø  MOST – Media Oriented Systems Transport

u  Design point:
Ø  Used where reliable, timely, medium-bandwidth

communication is needed
Ø  Real-time control of engine and other major car systems

