
u  Today: Wired embedded networks
Ø  Characteristics and requirements
Ø  Some embedded LANs

•  SPI
•  I2C
•  LIN
•  Ethernet

u  Next lecture: CAN bus
u  Then: 802.15.4 – wireless embedded network

Network from a High End Car

Embedded Networking
u  In the non-embedded world TCP/IP over Ethernet,

SONET, WiFi, 3G, etc. dominates

u  No single embedded network or network protocol
dominates
Ø  Why not?

Embedded vs. TCP/IP
u  Many TCP/IP features unnecessary or undesirable in

embedded networks
u  In embedded networks…

Ø  Stream abstraction seldom used
•  Embedded networks more like UDP than TCP
•  Why?

Ø  Reliability of individual packets is important
•  As opposed to building reliability with retransmission

Ø  No support for fragmentation / reassembly
•  Why?

Ø  No slow-start and other congestion control
•  Why?

Which is better?

Latency

Latency

Characteristics and Requirements
u  Determinism more important than latency
u  Above a certain point throughput is irrelevant
u  Prioritized network access is useful
u  Security important only in some situations
u  Resistance to interference may be important
u  Reliability is often through redundancy
u  Cost is a major factor
u  Often master / slave instead of peer to peer

A Few Embedded Networks
u  Low-end

Ø  SPI
Ø  I2C
Ø  LIN
Ø  RS-232

u  Medium-end
Ø  CAN
Ø  MOST
Ø  USB

u  High-end
Ø  Ethernet
Ø  IEEE-1394 (Firewire)
Ø  Myrinet

How do you choose one?
u  Does it give the necessary guarantees in…

Ø  Error rate
Ø  Bandwidth
Ø  Delivery time – worst case and average case
Ø  Fault tolerance

u  Is it affordable in…
Ø  PCB area
Ø  Pins
Ø  Power and energy
Ø  $$ for wiring, adapter, transceiver, SW licensing
Ø  Software resource consumption: RAM, ROM, CPU
Ø  Software integration and testing effort

Most Basic Embedded Network
u  “Bit banged” network:

Ø  Implemented almost entirely in software
Ø  Only HW support is GPIO pins
Ø  Send a bit by writing to output pin
Ø  Receive a bit by polling a digital input pin

u  Can implement an existing protocol or roll your own
u  Advantages

Ø  Cheap
Ø  Flexible: Support many protocols w/o specific HW support

u  Disadvantages
Ø  Lots of development effort
Ø  Imposes severe real-time requirements
Ø  Fast CPU required to support high network speeds

SPI
u  Serial Peripheral Interface

Ø  Say “S-P-I” or “spy”
u  Characteristics:

Ø  Very local area – designed for communicating with other
chips on the same PCB
•  NIC, DAC, flash memory, etc.

Ø  Full-duplex
Ø  Low / medium bandwidth
Ø  Master / slave

u  Very many embedded systems use SPI but it is
hidden from outside view

u  Originally developed by Motorola
Ø  Now found on many MCUs

SPI Signals
u  Four wires:

Ø  SCLK – clock
Ø  SS – slave select
Ø  MOSI – master-out / slave-in
Ø  MISO – master-in / slave-out

u  Single master / single slave configuration:

Multiple Slaves
u  Each slave has its own select line:

u  Addressing lots of slaves requires lots of I/O pins on
the master, or else a demultiplexer

CPOL and CPHA
u  Clock polarity and clock phase

Ø  Both are 1 bit
Ø  Configurable via device registers

u  Determine when:
Ø  First data bit is driven
Ø  Remaining data bits are driven
Ø  Data is sampled

u  Details are not that interesting…
u  However: All nodes must agree on these or else SPI

doesn’t work

SPI Transfer
1.  Master selects a slave
2.  Transfer begins at the next clock edge
3.  Eight bits transferred in each direction
4.  Master deselects the slave

u  Typical use of SPI from the master side:
1.  Configure the SPI interface
2.  Write a byte into the SPI data register

Ø  This implicitly starts a transfer
3.  Wait for transfer to finish by checking SPIF flag
4.  Read SPI status register and data register

u  Contrast this with a bit-banged SPI

More SPI
u  SPI is lacking:

Ø  Sophisticated addressing
Ø  Flow control
Ø  Acknowledgements
Ø  Error detection / correction

u  Practical consequences:
Ø  Need to build your own higher-level protocols on top of SPI
Ø  SPI is great for streaming data between a master and a few

slaves
Ø  Not so good as number of slaves increases
Ø  Not good when reliability of link might be an issue

I2C
u  Say “I-squared C”

Ø  Short for IIC or Inter-IC bus
u  Originally developed by Philips for communication

inside a TV set
u  Main characteristics:

Ø  Slow – generally limited to 400 Kbps
Ø  Max distance ~10 feet

•  Longer at slower speeds
Ø  Supports multiple masters
Ø  Higher-level bus than SPI

I2C Signals and Addressing
u  Two wires:

Ø  SCL – serial clock
Ø  SDA – serial data
Ø  These are kept high by default

u  Addressing:
Ø  Each slave has a 7-bit address

•  16 addresses are reserved
•  One reserved address is for broadcast
•  At most 112 slaves can be on a bus

Ø  10-bit extended addressing schemes exist and are
supported by some I2C implementations

I2C Transaction
u  Master issues a START condition

Ø  First pulls SDA low, then pulls SCL low
u  Master writes an address to the bus

Ø  Plus a bit indicating whether it wants to read or write
Ø  Slaves that don’t match address don’t respond
Ø  A matching slave issues an ACK by pulling down SDA

u  Either master or slave transmits one byte
Ø  Receiver issues an ACK
Ø  This step may repeat

u  Master issues a STOP condition
Ø  First releases SCL, then releases SDA
Ø  At this point the bus is free for another transaction

Multiple-Master I2C
u  One master issues a START

Ø  All other masters are considered slaves for that transaction
Ø  Other masters cannot use the bus until they see a STOP

u  What happens if a master misses a START?
Ø  When a master pulls a wire high, it must check that the wire

actually goes high
Ø  If not, then someone else is using it – need to back off until

a STOP is seen

LIN Bus
u  Very simple, slow bus for automotive applications

Ø  Master / slave, 20 Kbps maximum
Ø  Single wire
Ø  Can be efficiently implemented in software using existing

UARTs, timers, etc.
•  Target cost $1 per node, vs. $2 per node for CAN

Ethernet
u  Characteristics

Ø  1500-byte frames
Ø  Usually full-duplex
Ø  48-bit addresses
Ø  Much more complicated than SPI, I2C
Ø  Often requires an off-chip Ethernet controller

u  Can be used with or without TCP or UDP
u  Hubs, switches, etc. support large networks
u  Random exponential backoff has bad real-time

properties
Ø  No guarantees are possible under contention

Embedded TCP/IP
u  This is increasing in importance

Ø  Remember that TCP/IP can run over any low-level transport
•  Even I2C or CAN

Ø  TCP/IP stacks for very small processors exist
u  Drawbacks

Ø  TCP/IP is very generic – contains features that aren’t
needed

Ø  TCP/IP targets WANs – makes many design tradeoffs that
can be harmful in embedded situations

u  Good usage: Car contains a web server that can be
used to query mileage, etc.

u  Bad usage: Engine controller and fuel injector talk
using TCP/IP

Summary
u  Embedded networks

Ø  Usually packet based
Ø  Usually accessed using low-level interfaces

u  SPI, I2C
Ø  Simple and cheap
Ø  Often used for an MCU to talk to non-MCU devices

u  CAN
Ø  Real-time, fault tolerant LAN

u  Ethernet
Ø  More often used for communication between MCUs

u  Subsequent lectures:
Ø  CAN bus
Ø  802.15.4 – low-power wireless embedded networking

