Last Time

¢ Cost of nearly full resources
¢ RAM is limited

» Think carefully about whether you use a heap
» Look carefully for stack overflow
- Especially when you have multiple threads

¢ Embedded C

» Extensions for device access, address spaces, saturating
operations, fixed point arithmetic



Today

¢ Advanced interrupts
» Race conditions
» System design
» Prioritized interrupts
> Interrupt latency
> Interrupt problems:
» Stack overflow
* Overload
* Missed interrupts
« Spurious interrupts



Typical Interrupt Subsystem

¢ ISR == interrupt service routine
» Software that deals with an interrupt

¢ Interrupt controller == hardware device that helps
software deal with interrupts
¢ Each interrupt has a bit
» Logic independent of the processor core sets these bits
« E.g. ADC ready, timer expires, edge detected, etc.

> A pending bit can become set at any time
« This logic does not need to be synchronized with the MCU

¢ Each interrupt has a bit
¢ Processor has a bit



More Interrupt Basics

¢ Interrupt algorithm

> If global interrupt enable bit is set, processor checks for
pending interrupts prior to fetching a new instruction

» If any interrupts are pending, highest priority interrupt that
is pending and enabled is selected for execution

» If an interrupt can be fired, flush the pipeline and jump to
the interrupt s handler
¢ Some interrupts must be
» This clears the pending flag
» Failure to do this results in infinite interrupt loop
« Symptom: System hangs



Interrupts and Race Conditions

¢ Major problem with interrupts:
» They cause interleaving (threads do too)
> Interleaving is hard to think about

¢ First rule of writing correct interrupt-driven code

> Disable interrupts at all times when interrupt cannot be
handled properly

» Easier said than done - interrupt-driven code is notoriously
hard to get right
¢ When can an interrupt not be handled properly?
> When manipulating data that the interrupt handler touches
»> When not expecting the interrupt to fire
> Etc.



Interleaving is Tricky

interrupt 3 { .. does something with x .. }
main () {

x += 1;

¢ Do you want to disable interrupts while incrementing
X in main()?

¢ How to go about deciding this in general?



¢ What if:

X += 1;

¢ Translates to:

addqg.1l #1, x

¢ Do we need to disable interrupts to execute this
code?



¢ However what if:
x += 500;

¢ Translates to:
movea.l x,al

lea 500 (a0) ,a0
move.l a0, x



¢ The property that matters here is atomicity
» An atomic action is one that cannot be interrupted

¢ Individual instructions are usually atomic

¢ Disabling interrupts is a common way to execute a
block of instructions atomically

¢ Question: Do we really need atomicity?



¢ Answer: No— we need code to execute “as if”’ it
executed atomically

¢ In practice, this means: Only exclude computations
that matter

¢ Example 1: Only raise the interrupt level high
enough that all interrupts that can actually interfere
are disabled

¢ Example 2: Thread locks only prevent other threads
from acquiring the same lock

¢ Example 3: Non-maskable interrupts cannot be
masked



¢ Summary: Each piece of code in a system must
include protection against
> Threads
> Interrupts
» Activities on other processors
> DMA transfers
> Etc.

¢ that might cause incorrect execution by preempting
the code you are writing



Reentrant Code

¢ A function is if it works when called by
multiple interrupt handlers (or by main + one
interrupt handler) at the same time

¢ What if non-reentrant code is reentered?

¢ Strategies for reentrancy:
» Put all data into stack variables
« Why does this work?
> Disable interrupts when touching global variables

¢ In practice writing reentrant code is easy

> The real problem is not realizing that a transitive call-chain
reaches some non-reentrant call

» A function is non-reentrant if it can possibly call any non-
reentrant function



System-Level Interrupt Design

¢ Easy way:
» Interrupts never permitted to preempt each other
» Interrupts permitted to run for a long time
> Main loop disables interrupts liberally

¢ Hard way:

» Interrupts prioritized — high priority can always preempt
lower priority

» Interrupts not permitted to run for long
» Main loop disables interrupts with fine granularity
» Pros and cons?
¢ Stupid way:
» Any interrupt can preempt any other interrupt
» ColdFire doesn t let you do this!
« But other processors do



Interrupt Latency

¢ Interrupt latency is time between interrupt line being
asserted and time at which first instruction of
handler runs

¢ Two latencies of interest:
> Expected latency
» Worst-case latency
» How to compute these?

¢ Sources of latency:
> Slow instructions
» Code running with interrupts disabled
» Other interrupt handlers



Managing Interrupt Latency

¢ This is hard!

¢ Some strategies
> Nested interrupt handlers
» Prioritized interrupts
» Short critical sections
» Split interrupts

¢ Basic idea: Low-priority code must not block time-
critical interrupts for long



Nested Interrupts

¢ Interrupts are nested if multiple interrupts may be
handled concurrently

¢ Makes system more responsive but harder to
develop and validate
» Often much harder!

¢ Only makes sense in combination with prioritized
interrupt scheduling

» Nesting w/o prioritization increases latency without
increasing responsiveness!

¢ Nested interrupts on ColdFire are easy
> Just don t disable interrupts in your interrupt handler

¢ Some ARM processors make this really difficult



Prioritizing Interrupts

¢ Really easy on some hardware
» E.g.x86 and ColdFire automatically mask all interrupts of
same or lower priority
¢ On other hardware not so easy

> E.g. on ARM and AVR need to manually mask out lower
priority interrupts before reenabling interrupts

« Argh.



Reentrant Interrupts

¢ A reentrant interrupt may have multiple invocations
on the stack at once
> 99.9% of the time this is a bug

- Programmer didn’ t realize consequences of reenabling
interrupts

 Programmer recognized possibility and either ignored it
or thought it was a good idea

» 0.1% of the time reentrant interrupts make sense
* E.g. AvrX timer interrupt



Missed Interrupts

¢ Interrupts are not queued
» Pending flag is a single bit
» If interrupt is signaled when already pending, the new
interrupt request is dropped
¢ Consequences for developers
> Keep interrupts short
* Minimizes probability of missed interrupts

» Interrupt handlers should perform all work pending at the
device

« Compensates for missed interrupts



Splitting Interrupt Handlers

¢ Two options when handling an interrupt requires a
lot of work:

1. Run all work in the handler

2. Make the handler fast and run the rest in a deferred context
¢ Splitting interrupts is tricky

» State must be passed by hand

» The two parts become concurrent

¢ There are many ways to run the deferred work
» Background loop polls for work
> Wake a thread to do the work

» Windows has deferred procedure calls, Linux has tasklets
and bottom-half handlers



Spurious Interrupts

¢ Glitches can cause interrupts for nonexistent

devices to fire
> Processor manual talks about these

¢ Solutions:
> Have a default interrupt handler that either ignores the
spurious interrupt or resets the system
» Ensure that all nonexistent interrupts are permanently
disabled



Interrupts on ARM1176-JZFS

¢ ARM processor core only has two interrupt wires:
IRQ and FIQ

» All physical interrupts need to share these

¢ ARM core has a number of different modes
» FIQ mode for fast interrupt handling
« 8 private registers
« Higher priority than IRQ
» IRQ mode for general-purpose interrupt handling

» Commonly the FIQ is reserved for a single interrupt source
which can be served with very low latency (5-8 cycles)

¢ The CPSR (status register) has separate bits for IRQ
and FIQ interrupts to be individually enabled /
disabled



Interrupts on ARM1176-JZFS

¢ VIC: the vectored interrupt controller
» Not part of the ARM architecture, but developed and
licensed by ARM
¢ Purpose of VIC is to:

» Multiplex multiple interrupt sources on the IRQ and FIQ
lines

» Permit software to mask out individual interrupt sources
> Prioritize among pending interrupts
» Determine where the ISR lies and tell the CPU to jump to it

¢ Your code must:
» Properly configure the VIC
* Priorities, ISR locations, etc.
» Tell the VIC when you have dealt with an interrupt



Interrupts on ARM1176-JZFS

¢ Nested interrupts not supported by default

¢ CPU supports a low-latency configuration

»> When an interrupt fires, CPU will abort the current
instruction if it is a slow one

 Restart it later

> Need to avoid certain instructions such as multi-word loads
and stores



Interrupts on ColdFire

¢ Interrupt controller on MCF52233 is fairly
sophisticated

» Many MCUs have much simpler controllers

¢ Processor has a 3-bit interrupt mask in SR

¢ Once per instruction, processor looks for pending
interrupts with priority greater than the mask value
> However, level 7 interrupts are non-maskable



N o o A

ColdFire Interrupt Sequence

CPU enters supervisor mode
8-bit vector fetched from interrupt controller

Vector is an index into the 256-entry exception
vector table

¢ Vector entries are 32-bit addresses
¢ Vectors 0-63 are reserved, you can use 64-255

Push SR and PC
Load vector address into PC
Set interrupt mask to level of current interrupt

First instruction of interrupt handler is guaranteed
to be executed

¢ So this would be a good place to disable interrupts, if you
don’ t want nested interrupts



More ColdFire

¢ Within an interrupt level, there are 9 priorities

¢ Interrupt controller has registers that permit you to
assign level and priority to interrupt sources

» In contrast, many embedded processors fix priorities at
design time

¢ Many ColdFire processors support two stack
pointers
» User mode and supervisor mode



Interrupt Overload

¢ If an external interrupt fires too frequently
> Lower-priority interrupts starved
» Background loop starved

¢ Why would this happen?
> Loose or damaged connection
» Electrical noise
» Malicious or buggy node on network

¢ Apollo 11

» Computer reset multiple times while attempting to land on
moon

> LLM guidance computer overwhelmed by phantom radar
data

» Ground control almost aborted the landing



Potential Overload Sources

Source Max. Interrupt Freq. (Hz)
knife switch bounce 333
loose wire 500
toggle switch bounce 1 000
rocker switch bounce 1300
serial port (@115 kbps 11 500
10 Mbps Ethernet 14 880
CAN bus 15000
12C bus 50000
USB 90 000
100 Mbps Ethernet 148 800
Gigabit Ethernet 1 488000




Preventing Interrupt Overload

¢ Strategies:
» Trust the hardware not to overload
> Don’ t use interrupts — poll
» Design the software to prevent interrupt overload
> Design the hardware to prevent interrupt overload



—>— pure polling

—+— pure interrupts

—e— emulated hardware scheduler
—a&— strict software scheduler

—e&— bursty software scheduler N=4
—a— bursty software scheduler N=16

100

maximum allowed interrupt

arrival rate: 4 kHz
80 -

underload overload
- ' ot

% CPU used by interrupts and interrupt schedulers

= = s=man
* oy 0
A A A A& 4
H H *ooo
0 T T v — T T T 7T
100 1000 10000 100000

Offered interrupt load (Hz)



Hardware Interrupt Scheduler

=
g 3
Xm§7
; Coqtrol Ini'tial value Reset
rate L__Register counter
\ 4 Y F‘f
System
Clk/64 decrement
> Clock Divider > Count-Down
Counter
A
4
> True:
External Interrupt Signal Is cnt pass along to AVR core
> ZEro
? P> False:

set pending flag



Interrupt Pros

¢ Support very efficient systems

» No polling — CPU only spends cycles processing work when
there is work to do

> Interrupts rapidly wake up a sleeping processor

¢ Support very responsive systems

> Well-designed and well-implemented software can respond
to interrupts within microseconds



Interrupt Cons

¢ Introduce hard problems:
» Concurrency and reentrance
» Missed interrupts
» Spurious interrupts
> Interrupt overload

¢ Make stack overflow harder to deal with
¢ Interrupt-driven codes hard to test adequately
¢ Achieving fast worst-case response times is difficult

¢ Overall:
» Few safety-critical systems are interrupt-driven!



Summary

¢ Interrupts are very convenient
» But a huge can of worms

¢ Interrupt handling is a whole-system design issue
> Can’t just handle each interrupt individually
¢ Never write code that allows reentrant interrupts



