
Last Time
u  Cost of nearly full resources
u  RAM is limited

Ø  Think carefully about whether you use a heap
Ø  Look carefully for stack overflow

•  Especially when you have multiple threads
u  Embedded C

Ø  Extensions for device access, address spaces, saturating
operations, fixed point arithmetic

Today
u  Advanced interrupts

Ø  Race conditions
Ø  System design
Ø  Prioritized interrupts
Ø  Interrupt latency
Ø  Interrupt problems:

•  Stack overflow
•  Overload
•  Missed interrupts
•  Spurious interrupts

Typical Interrupt Subsystem
u  ISR == interrupt service routine

Ø  Software that deals with an interrupt
u  Interrupt controller == hardware device that helps

software deal with interrupts
u  Each interrupt has a pending bit

Ø  Logic independent of the processor core sets these bits
•  E.g. ADC ready, timer expires, edge detected, etc.

Ø  A pending bit can become set at any time
•  This logic does not need to be synchronized with the MCU

u  Each interrupt has a disable bit
u  Processor has a global disable bit

More Interrupt Basics
u  Interrupt algorithm

Ø  If global interrupt enable bit is set, processor checks for
pending interrupts prior to fetching a new instruction

Ø  If any interrupts are pending, highest priority interrupt that
is pending and enabled is selected for execution

Ø  If an interrupt can be fired, flush the pipeline and jump to
the interrupt’s handler

u  Some interrupts must be acknowledged
Ø  This clears the pending flag
Ø  Failure to do this results in infinite interrupt loop

•  Symptom: System hangs

Interrupts and Race Conditions
u  Major problem with interrupts:

Ø  They cause interleaving (threads do too)
Ø  Interleaving is hard to think about

u  First rule of writing correct interrupt-driven code
Ø  Disable interrupts at all times when interrupt cannot be

handled properly
Ø  Easier said than done – interrupt-driven code is notoriously

hard to get right
u  When can an interrupt not be handled properly?

Ø  When manipulating data that the interrupt handler touches
Ø  When not expecting the interrupt to fire
Ø  Etc.

Interleaving is Tricky
interrupt_3 { … does something with x … }

main () {
 …
 x += 1;
 …
}

u  Do you want to disable interrupts while incrementing
x in main()?

u  How to go about deciding this in general?

u  What if:

 x += 1;

u  Translates to:

 addq.l #1,_x

u  Do we need to disable interrupts to execute this

code?

u  However what if:

 x += 500;

u  Translates to:

 movea.l _x,a0
 lea 500(a0),a0
 move.l a0,_x

u  The property that matters here is atomicity
Ø  An atomic action is one that cannot be interrupted

u  Individual instructions are usually atomic

u  Disabling interrupts is a common way to execute a
block of instructions atomically

u  Question: Do we really need atomicity?

u  Answer: No– we need code to execute “as if” it
executed atomically

u  In practice, this means: Only exclude computations
that matter

u  Example 1: Only raise the interrupt level high
enough that all interrupts that can actually interfere
are disabled

u  Example 2: Thread locks only prevent other threads
from acquiring the same lock

u  Example 3: Non-maskable interrupts cannot be
masked

u  Summary: Each piece of code in a system must
include protection against
Ø  Threads
Ø  Interrupts
Ø  Activities on other processors
Ø  DMA transfers
Ø  Etc.

u  that might cause incorrect execution by preempting
the code you are writing

Reentrant Code
u  A function is reentrant if it works when called by

multiple interrupt handlers (or by main + one
interrupt handler) at the same time

u  What if non-reentrant code is reentered?
u  Strategies for reentrancy:

Ø  Put all data into stack variables
•  Why does this work?

Ø  Disable interrupts when touching global variables
u  In practice writing reentrant code is easy

Ø  The real problem is not realizing that a transitive call-chain
reaches some non-reentrant call

Ø  A function is non-reentrant if it can possibly call any non-
reentrant function

System-Level Interrupt Design
u  Easy way:

Ø  Interrupts never permitted to preempt each other
Ø  Interrupts permitted to run for a long time
Ø  Main loop disables interrupts liberally

u  Hard way:
Ø  Interrupts prioritized – high priority can always preempt

lower priority
Ø  Interrupts not permitted to run for long
Ø  Main loop disables interrupts with fine granularity
Ø  Pros and cons?

u  Stupid way:
Ø  Any interrupt can preempt any other interrupt
Ø  ColdFire doesn’t let you do this!

•  But other processors do

Interrupt Latency
u  Interrupt latency is time between interrupt line being

asserted and time at which first instruction of
handler runs

u  Two latencies of interest:
Ø  Expected latency
Ø  Worst-case latency
Ø  How to compute these?

u  Sources of latency:
Ø  Slow instructions
Ø  Code running with interrupts disabled
Ø  Other interrupt handlers

Managing Interrupt Latency
u  This is hard!
u  Some strategies

Ø  Nested interrupt handlers
Ø  Prioritized interrupts
Ø  Short critical sections
Ø  Split interrupts

u  Basic idea: Low-priority code must not block time-
critical interrupts for long

Nested Interrupts
u  Interrupts are nested if multiple interrupts may be

handled concurrently
u  Makes system more responsive but harder to

develop and validate
Ø  Often much harder!

u  Only makes sense in combination with prioritized
interrupt scheduling
Ø  Nesting w/o prioritization increases latency without

increasing responsiveness!
u  Nested interrupts on ColdFire are easy

Ø  Just don’t disable interrupts in your interrupt handler
u  Some ARM processors make this really difficult

Prioritizing Interrupts
u  Really easy on some hardware

Ø  E.g. x86 and ColdFire automatically mask all interrupts of
same or lower priority

u  On other hardware not so easy
Ø  E.g. on ARM and AVR need to manually mask out lower

priority interrupts before reenabling interrupts
•  Argh.

Reentrant Interrupts
u  A reentrant interrupt may have multiple invocations

on the stack at once
Ø  99.9% of the time this is a bug

•  Programmer didn’t realize consequences of reenabling
interrupts

•  Programmer recognized possibility and either ignored it
or thought it was a good idea

Ø  0.1% of the time reentrant interrupts make sense
•  E.g. AvrX timer interrupt

Missed Interrupts
u  Interrupts are not queued

Ø  Pending flag is a single bit
Ø  If interrupt is signaled when already pending, the new

interrupt request is dropped
u  Consequences for developers

Ø  Keep interrupts short
•  Minimizes probability of missed interrupts

Ø  Interrupt handlers should perform all work pending at the
device
•  Compensates for missed interrupts

Splitting Interrupt Handlers
u  Two options when handling an interrupt requires a

lot of work:
1.  Run all work in the handler
2.  Make the handler fast and run the rest in a deferred context

u  Splitting interrupts is tricky
Ø  State must be passed by hand
Ø  The two parts become concurrent

u  There are many ways to run the deferred work
Ø  Background loop polls for work
Ø  Wake a thread to do the work
Ø  Windows has deferred procedure calls, Linux has tasklets

and bottom-half handlers

Spurious Interrupts
u  Glitches can cause interrupts for nonexistent

devices to fire
Ø  Processor manual talks about these

u  Solutions:
Ø  Have a default interrupt handler that either ignores the

spurious interrupt or resets the system
Ø  Ensure that all nonexistent interrupts are permanently

disabled

Interrupts on ARM1176-JZFS
u  ARM processor core only has two interrupt wires:

IRQ and FIQ
Ø  All physical interrupts need to share these

u  ARM core has a number of different modes
Ø  FIQ mode for fast interrupt handling

•  8 private registers
•  Higher priority than IRQ

Ø  IRQ mode for general-purpose interrupt handling
Ø  Commonly the FIQ is reserved for a single interrupt source

which can be served with very low latency (5-8 cycles)
u  The CPSR (status register) has separate bits for IRQ

and FIQ interrupts to be individually enabled /
disabled

Interrupts on ARM1176-JZFS
u  VIC: the vectored interrupt controller

Ø  Not part of the ARM architecture, but developed and
licensed by ARM

u  Purpose of VIC is to:
Ø  Multiplex multiple interrupt sources on the IRQ and FIQ

lines
Ø  Permit software to mask out individual interrupt sources
Ø  Prioritize among pending interrupts
Ø  Determine where the ISR lies and tell the CPU to jump to it

u  Your code must:
Ø  Properly configure the VIC

•  Priorities, ISR locations, etc.
Ø  Tell the VIC when you have dealt with an interrupt

Interrupts on ARM1176-JZFS
u  Nested interrupts not supported by default

u  CPU supports a low-latency configuration
Ø  When an interrupt fires, CPU will abort the current

instruction if it is a slow one
•  Restart it later

Ø  Need to avoid certain instructions such as multi-word loads
and stores

Interrupts on ColdFire
u  Interrupt controller on MCF52233 is fairly

sophisticated
Ø  Many MCUs have much simpler controllers

u  Processor has a 3-bit interrupt mask in SR

u  Once per instruction, processor looks for pending
interrupts with priority greater than the mask value
Ø  However, level 7 interrupts are non-maskable

ColdFire Interrupt Sequence
1.  CPU enters supervisor mode
2.  8-bit vector fetched from interrupt controller
3.  Vector is an index into the 256-entry exception

vector table
u  Vector entries are 32-bit addresses
u  Vectors 0-63 are reserved, you can use 64-255

4.  Push SR and PC
5.  Load vector address into PC
6.  Set interrupt mask to level of current interrupt
7.  First instruction of interrupt handler is guaranteed

to be executed
u  So this would be a good place to disable interrupts, if you

don’t want nested interrupts

More ColdFire
u  Within an interrupt level, there are 9 priorities
u  Interrupt controller has registers that permit you to

assign level and priority to interrupt sources
Ø  In contrast, many embedded processors fix priorities at

design time
u  Many ColdFire processors support two stack

pointers
Ø  User mode and supervisor mode

Interrupt Overload
u  If an external interrupt fires too frequently

Ø  Lower-priority interrupts starved
Ø  Background loop starved

u  Why would this happen?
Ø  Loose or damaged connection
Ø  Electrical noise
Ø  Malicious or buggy node on network

u  Apollo 11
Ø  Computer reset multiple times while attempting to land on

moon
Ø  LLM guidance computer overwhelmed by phantom radar

data
Ø  Ground control almost aborted the landing

Potential Overload Sources

Preventing Interrupt Overload
u  Strategies:

Ø  Trust the hardware not to overload
Ø  Don’t use interrupts – poll
Ø  Design the software to prevent interrupt overload
Ø  Design the hardware to prevent interrupt overload

Hardware Interrupt Scheduler

Interrupt Pros
u  Support very efficient systems

Ø  No polling – CPU only spends cycles processing work when
there is work to do

Ø  Interrupts rapidly wake up a sleeping processor
u  Support very responsive systems

Ø  Well-designed and well-implemented software can respond
to interrupts within microseconds

Interrupt Cons
u  Introduce hard problems:

Ø  Concurrency and reentrance
Ø  Missed interrupts
Ø  Spurious interrupts
Ø  Interrupt overload

u  Make stack overflow harder to deal with
u  Interrupt-driven codes hard to test adequately
u  Achieving fast worst-case response times is difficult
u  Overall:

Ø  Few safety-critical systems are interrupt-driven!

Summary
u  Interrupts are very convenient

Ø  But a huge can of worms
u  Interrupt handling is a whole-system design issue

Ø  Can’t just handle each interrupt individually
u  Never write code that allows reentrant interrupts

