
Important From Last Time
u  Volatile is tricky
u  To write correct embedded C and C++, you

have to understand what volatile does and
does not do
Ø  What is the guarantee that it provides?

u  Don’t make the 8 mistakes shown in lecture
Ø  What were they?

Today

u  MISRA-C
Ø  Subset of C language for critical systems

u  Interesting MISRA rules
u  MISRA-aware tools
u  MISRA limitations
u  Other language subsets

Safety-Critical Systems

u  System is safety-critical if people might die
due to software bugs

u  Examples:
Ø  Automobile stability / traction control
Ø  Medical automation
Ø  Many military applications

u  You develop safety-critical software
differently from non-critical software

u  We’ll cover this topic in more detail later

MISRA-C

u  MISRA – Motor Industry Software Reliability
Association

u  Their bright idea:
Ø  Can’t avoid C
Ø  But can force developers to avoid features of C

that are known to be problematic
Ø  Some language flaws
Ø  Some legitimate features that happen to be

bad for embedded software
u  Most of MISRA-C is just good common

sense for any C programmer

Terminology
u  Execution error: Something illegal done by

a program
Ø  Out-of-bounds array reference
Ø  Divide by zero
Ø  Uninitialized variable usage

u  Trapped execution error: Immediately
results in exception or program termination

u  Untrapped execution error: Program keeps
running
Ø  But may fail in an unexpected way later on

Ø  E.g., due to corrupted RAM
Ø  In C, operations with undefined behavior are not

trapped

Safety
u  A safe language does not allow untrapped

execution errors
u  A statically safe language catches all

execution errors at compile time
u  Useful languages can’t be completely

statically safe
Ø  Java is dynamically safe
Ø  C and C++ are very unsafe
Ø  MISRA C is not safe either

u  However, adherence to MISRA-C can largely
be statically checked
Ø  This eliminates or reduces the likelihood of some

kinds of untrapped execution errors

MISRA-C Rule 1.2
u  No reliance shall be placed on undefined or

unspecified behavior.
Ø  Lots of things in C have undefined behavior

Ø  Divide by zero
Ø  Out-of-bounds memory access
Ø  Signed integer overflow

Ø  Lots of things in C have implementation-defined
and unspecified behavior
Ø  printf (“a”) + printf (“b”);

u  Both of these hard to detect at compile
time, in general

u  Implementation-defined behavior is fine in
MISRA-C
Ø  Why?

MISRA-C Rule 5.2
u  Identifiers in an inner scope shall not use

the same name as an identifier in an outer
scope, and therefore hide that identifier.

int total;
int foo (int total) {
 return 3*total;
}

u  What does this code mean?
u  Why is it bad?

More MISRA-C

u  Rule 6.3: Typedefs that indicate size and
signedness should be used in place of the
basic types.
Ø  For example uint32_t or int8_t
Ø  Why?
Ø  Good idea in general?

u  Rule 9.1: All automatic variables shall have
been assigned a value before being used.
Ø  Data segment: Initialized by programmer
Ø  BSS segment: Initialized to zero
Ø  Stack variables: Initialized to garbage

More MISRA-C

u  Rule 11.1: Conversions shall not be
performed between a pointer to a function
and any type other than an integral type.
Ø  Discuss

u  Rule 11.5: A cast shall not be performed
that removes any const or volatile
qualification from the type addressed by a
pointer.
Ø  Discuss

More MISRA-C

u  Rule 12.1: Limited dependence should be
placed on C’s operator precedence rules in
expressions.

u  What does this program print?
int main (void)
{
 int x = 0;
 if (x & 1 == 0) {
 printf ("t\n");
 } else {
 printf ("f\n");
 }
}

More MISRA-C

u  Rule 12.2: The value of an expression shall
be the same under any order of evaluation
that the standard permits.

u  Rule 12.3: The sizeof operator shall not be
used on expressions that contain side
effects.
Ø  E.g. sizeof(x++);
Ø  What does this code mean?
Ø  Absurd that this is permissible in the first place

More MISRA-C

u  Rule 12.4: The right-hand operand of a
logical && or || operator must not contain
side effects.
Ø  && and || are short-circuited in C

Ø  Evaluation terminates as soon as the truth of
falsity of the expression is definite

Ø  if (x || y++) { … }
Ø  Can this be verified at compile time?
Ø  What is a side effect anyway?

Ø  Page fault?
Ø  Cache line replacement?

More MISRA-C

u  12.10: The comma operator shall not be
used.
Ø  Some of the most unreadable C makes use of

commas
(C-=Z=!Z) ||
 (printf("\n|"), C = 39, H--);

u  13.3: Floating-point expressions shall not
be tested for equality or inequality.
Ø  Why?

More MISRA-C

u  14.1: There shall be no unreachable code.
Ø  Good idea?

u  14.7: A function shall have a single point of
exit at the end of the function.
Ø  Good idea?

More MISRA-C

u  16.2: Functions shall not call themselves,
either directly or indirectly.
Ø  Good idea?

u  16.10: If a function returns error
information, then that error information
shall be tested.
Ø  Good idea?
Ø  What does scanf() return? printf()? fclose()?

More MISRA-C

u  17.6: The address of an object with
automatic storage shall not be assigned to
another object that may persist after the
first object has ceased to exist.

int * foo (void) {
 int x;
 int *y = &x;
 return y;
}

Ø  This is a common (and nasty) C/C++ error
Ø  How is this avoided in Java?

More MISRA-C

u  18.3: An area of memory shall not be reused
for unrelated purposes.
Ø  No overlays!

u  19.4: C macros shall only expand to a
braced initializer, a constant, a
parenthesized expression, a type qualifier, a
storage class specifier, or a do-while-zero
construct.
Ø  Avoids some problems we talked about earlier

u  20.4: Dynamic heap memory allocation shall
not be used.
Ø  Woah!

MISRA Limitations

u  What cannot be accomplished within the
MISRA framework?
Ø  Safety
Ø  Eliminating the preprocessor
Ø  Generics

u  “A shack built on a swamp”

Tool Support for MISRA

u  Goals:
Ø  Compiler should emit warning or error for any

MISRA rule violation
Ø  Should not emit warnings or errors for code not

violating the rules
u  Tools:

Ø  Compilers from Green Hills, IAR, Keil
Ø  PC-Lint

u  Reportedly there is considerable variation
between tools

Other Language Subsets

u  SPARK Ada
Ø  Subset of Ada95
Ø  Probably the most serious attempt to date at a

safe, statically checkable language for critical
software

Ø  Too bad Ada is so uncool…
u  Embedded C++

Ø  No multiple inheritance
Ø  No RTTI
Ø  No exceptions
Ø  No templates
Ø  No namespaces
Ø  No new-style type casts

More Subsets
u  J2ME

Ø  Not actually a language subset
Ø  Restricted Java runtime environment that has far

smaller memory footprint
Ø  Popular on cell phones, etc.

u  JavaCard
Ø  Very small – targets 8-bit processors

u  Basic ideas:
Ø  A good language subset restricts expressiveness

a little and restricts potential errors a lot
Ø  All languages have warts (at least in the context

of embedded systems)
Ø  Simpler compilers may be better

Summary

u  C has clear advantages and disadvantages
for building safety-critical embedded
software
Ø  MISRA-C mitigates some of the disadvantages

u  Language subsetting can be a good idea

