
Last Time
u  Low-level parts of the toolchain for

embedded systems
Ø  Linkers
Ø  Programmers
Ø  Booting an embedded CPU
Ø  Debuggers

Ø  JTAG
u  Any weak link in the toolchain will hinder

development

Today: Intro to Embedded C

u  We are not learning C
u  We are leaning “advanced embedded C”

Ø  Issues that frequently come up when developing
embedded software

Ø  Seldom care about these when writing general-
purpose apps

Embedded Compilers

u  Today:
Ø  General capabilities
Ø  Specific issues part 1

u  First: Almost all compilers for embedded
systems are cross-compilers
Ø  Compiler runs on an architecture other than its

target
Ø  Does this matter at all?

Compiler Requirements
u  Be correct

Ø  Embedded compilers are notoriously buggy
Ø  Relatively few copies sold
Ø  Diverse hardware impedes thorough testing

u  Produce small, fast code
Ø  Speed and size are conflicting goals

Ø  Oops!
Ø  Take advantage of platform-specific features

u  Produce code that’s easy to debug
Ø  Conflicts with optimization
Ø  Whole-program optimization particularly

problematic

Want To Tell the Compiler…

u  There are only 32 KB of RAM
Ø  Program must fit, but there’s no point reducing

RAM consumption further
u  There are only 256 KB of ROM

Ø  Again: Program must fit but there’s no point
reducing ROM consumption further

u  Interrupt handler 7 is time critical
Ø  So make it very fast, even if this bloats code

u  Threads 8-13 are background threads
Ø  Performance is unimportant so focus on

reducing code size

What We Get To Tell It
u  A few compiler flags:

Ø  -O2, -Os, Etc.
Ø  May or may not do what you want
Ø  Typically no flags for controlling RAM usage

u  Therefore…
Ø  Meeting resource constraints is 100% your

problem
Ø  Shouldn’t assume compiler did the right thing
Ø  Shouldn’t assume code you reuse does the right

thing
Ø  Including the C library

Ø  Figure out which resources matter and focus on
dealing with them

Ø  Changing or upgrading compiler mid-project is
usually very bad

Nice Example
u  I have a 1982 book on 6502 assembly

programming:
Ø  strcmp(): compare two strings

Ø  Registers used: all
Ø  Execution time: 93 + 19 * length of shorter

string
Ø  Code size: 52 bytes
Ø  Data size:

Ø  4 bytes on page 0
Ø  4 bytes to hold the string pointers

u  Try to find this information for current C
libraries!

Why use C?

u  “Mid-level” language
Ø  Some high-level features
Ø  Good low-level control
Ø  Static types
Ø  Type system is easily subverted

u  C is popular and well-understood
Ø  Plenty of good developers exist
Ø  Plenty of good compilers exist
Ø  Plenty of good books and web pages exist

u  In many cases there’s no obviously
superior language

Why not use C?
u  Hard to write portable code

Ø  For example “int” does not have a fixed size
u  Hard to write correct code

Ø  Very hard to tell when your code does something
bad

Ø  E.g. out-of-bounds array reference
Ø  This is Microsoft’s major problem…

u  Language standard is weak in some areas
Ø  Means there is plenty of diversity in

implementations
u  Linking model is unsafe
u  Preprocessor is poorly designed

CPP – the C Preprocessor

u  CPP runs as a separate pass before the
compiler

u  Basic usage:
Ø  #define FOO 32
Ø  int y = FOO;

u  Compiler sees:
Ø  int y = 32;

u  CPP operates by lexical substitution
u  Important: The compiler never sees FOO

Ø  So of course the debugger, linker, etc. do not
know about it either

Some Interesting Macros
#define PLUS_ONE(x) x+1
int a = PLUS_ONE(y)*3

#define TIMES_TWO(x) (x*2)
int a = TIMES_TWO(1+1)

#define MAX(x,y) ((x)>(y)?(x):(y))
void f () { int m = MAX(a++,b); }

#define INT_POINTER int *
INT_POINTER x, y;

Macro Problems

u  Root of the problem:
Ø  C preprocessor is highly error-prone
Ø  Avoid it except to do very simple things
Ø  Fully parenthesize macro definitions
Ø  Make macro usage conventions clear

u  Entertaining macros:
#define DISABLE_INTS asm volatile (“cli”); {
#define ENABLE_INTS asm volatile (“sei”); }

Ø  Is this good or bad macro usage?

u  Old conventional wisdom:
Ø  Careful use of CPP is good

u  New conventional wisdom:
Ø  Most uses of CPP can be avoided
Ø  Trust the optimizer

Macro Avoidance

u  Constants
Ø  Instead of

Ø  #define X 10
Ø  Use

Ø  const int X = 10;

u  Functions
Ø  Instead of

Ø  #define INC_X x++
Ø  Use

Ø  inline void INC_X(void) { x++ }

More Macro Avoidance

u  Conditional compilation
Ø  Instead of

Ø  #if FOO … #endif
Ø  Use

Ø  if (FOO) { … }
Ø  Instead of

Ø  #ifdef X86 … #endif
Ø  Put x86 code into a separate file

u  However: Design of C makes it impossible
to avoid macros entirely
Ø  C++ much better in this respect

Bit Manipulation
without Macros

u  Something like this is good:

void set_bit (int *a, int bit) {
 *a |= (1<<bit);
}
void clear_bit (int *a, int bit) {
 *a &= ~(1<<bit);
}

CPP in Action

u  Sometimes you need to look at the CPP
output
Ø  That is, see what the C compiler really sees
Ø  There’s always a way to do this
Ø  In CodeWarrior, do this using the IDE
Ø  For gcc: “gcc –E foo.c”

Intrinsics
u  “Intrinsic” functions are built in to the

compiler
Ø  As opposed to living in a library somewhere

u  Why do compilers support intrinsics?
Ø  Efficiency – can perform interesting

optimizations
Ø  Ease of use

Ø  Compiler can add function calls where they
do not exist in your code

Ø  Compiler can eliminate “library calls” in your
code

u  Need to be careful when compiler inserts
function calls for you!

Integer Division Intrinsics
u  On ARM7
sdiv:

 str lr, [sp, #-4]!
 bl __divsi3
 ldr pc, [sp], #4

u  On AVR
sdiv:

 rcall __divmodhi4
 mov r25,r23
 mov r24,r22
 ret

int sdiv (int x, int y)

{

 return x/y;

}

Copy Intrinsic

ColdFire code:

struct_copy2:
 link a6,#0
 moveq #6,d1
 move.w (a1),(a0)
 move.w 2(a1),2(a0)
 addq.l #4,a1
 addq.l #4,a0
 subq.l #1,d1
 bne.s *-14
 unlk a6
 rts

struct foo {
 int x, y[3];
 double z;
};

void struct_copy2 (struct foo *a,
 struct foo *b)
{
 *a = *b;
}

More Copy
u  On ARM

struct_copy2:
 str lr, [sp, #-4]!
 mov lr, r1
 mov ip, r0
 ldmia lr!, {r0, r1, r2, r3}
 stmia ip!, {r0, r1, r2, r3}
 ldmia lr, {r0, r1}
 stmia ip, {r0, r1}
 ldr pc, [sp], #4

Copy on x86-64

u  From Intel CC (but copying a larger struct):

struct_copy:
 pushq %rsi
 movl $4000, %edx
 call _intel_fast_memcpy
 popq %rcx
 ret

String Length
int len_hello1 (void)
{

 return strlen ("hello");
}

u  ColdFire code:

len_hello1:
0x00000000 link a6,#0
0x00000004 lea _@71,a0
0x0000000A jsr _strlen
0x00000010 unlk a6
0x00000012 rts

Another String Length

u  ARM

len_hello1:
 mov r0, #5
 bx lr

So What?

u  Compiler can add function calls where you
didn’t have one

u  Compiler can take out function calls that
you put in

u  How will you understand the resource
usage of the resulting code?
Ø  What resources are we even talking about?

30-Second Interrupt Review
u  Interrupts are a kind of asynchronous

exception
u  When some external condition becomes

true, CPU jumps to the interrupt vector
u  When an interrupt returns, previously

executing code resumes as if nothing
happened
Ø  Unless the interrupt handler is buggy
Ø  Also, the state of memory and/or devices has

probably changed
u  With appropriate compiler support

interrupts look just like regular functions
Ø  Don’t be fooled – there are major differences

between interrupts and functions

ARM / GCC Interrupt
void __attribute__ ((interrupt("IRQ")))
tc0_cmp (void)
{
 timeval++;
 VICVectAddr = 0;
}

u  All embedded compilers provide similar
extensions

u  C language has no support for interrupts

Assembly for ARM Interrupt
tc0_cmp:

 stmfd sp!, {r2, r3}
 ldr r2, timeval
 ldr r3, [r2, #0]
 add r3, r3, #1
 str r3, [r2, #0]
 mov r2, #0
 ldr r3, VICVectAddr
 str r2, [r3, #0]
 ldmfd sp!, {r2, r3}
 subs pc, lr, #4

Example CF Interrupt
u  You write:
 __declspec(interrupt)
 void rtc_handler(void)
 {

 MCF_GPIO_PORTTC ^= 0xf;
 }
u  After CPP:
 __declspec(interrupt)
 void rtc_handler(void)
 {
 (*(vuint8 *)(0x4010000F)) ^= 0xf;
 }

Assembly for CF Interrupt
rtc_handler:
 strldsr #0x2700
 link a6,#0
 lea -16(a7),a7
 movem.l d0-d1/a0,4(a7)
 movea.l #1074790415,a0
 moveq #0,d1
 move.b (a0),d1
 moveq #15,d0
 eor.l d0,d1
 move.b d1,(a0)
 movem.l 4(a7),d0-d1/a0
 unlk a6
 addq.l #4,a7
 rte

Inline Assembly

u  Two reasons to add assembly into a C
program:

1.  Need to say something that can’t be said in C
2.  Need higher performance than the C compiler

provides
u  In both cases

Ø  Write most of a function in C and then throw in a
few instructions of assembly where needed
Ø  Let the compiler do the grunt work of

respecting the calling convention
u  When writing asm to increase performance:

Ø  Be absolutely sure you identified the culprit
Ø  First try to write faster C

CodeWarrior Inline Asm

long square (short a) {
 long result=0;
 asm {
 move.w a,d0 // fetch function argument ‘a’
 mulu.w d0,d0 // multiply
 move.l d0,result // store in local ‘result’
 }
 return result;
}

u  Compiler generates glue code integrating the assembler

and C code
u  What if it can’t?

Inline Assembly Example
square:
 link a6,#0
 subq.l #8,a7
 move.w d0,-8(a6)
 clr.l -6(a6)
 move.w -8(a6),d0
 mulu.w d0,d0
 move.l d0,-6(a6)
 move.l -6(a6),d0
 unlk a6
 rts

GCC Inline Assembly

u  Format:
 asm volatile (code : outputs : inputs : clobbers);

Ø  Code – instructions
Ø  Outputs – maps results of instructions into C

variables
Ø  Inputs – maps C variables to inputs of instructions
Ø  Clobbers – tells the compiler to forget the contents

of registers that were invalidated by the assembly
code

u  This syntax is much more difficult to use than
CodeWarrior’s!

Important From Today

u  Embedded C
Ø  Pros and cons

u  Macros and how to avoid them
u  Intrinsics
u  Interrupt syntax
u  Inline assembly

