Last Time

¢ Embedded systems introduction

YV V ¥V VY V V VY VY

Definition of embedded system
Common characteristics

Kinds of embedded systems
Crosscutting issues

Software architectures
Choosing a processor
Choosing a language
Choosing an OS

Today

¢ ARM and ColdFire

> History

» Variations

» ISA (instruction set architecture)
» Both 32-bit

¢ Also some examples from
» AVR: 8-bit
» MSP430: 16-bit

Embedded Diversity

There is a lot of diversity in what embedded
processors can accomplish, and how they
accomplish it

Example

> General purpose processors can perform
multiplication in a single cycle

> Mid-grade microcontrollers will have a HW
multiply unit, but it Il be slow

» Low-end microcontrollers have no multiplier at
all

Lots of chips...

¢ Freescale — top embedded processor
manufacturer with ~28% of total market

> HCO05, HC08, HC11, HC12, HC16, ColdFire, PPC,
etc.

» Largest supplier of semiconductors for the
automobile market

¢ ARM - the most popular 32-bit architecture
» By 2012 ARM had shipped 30 billion processors
» ARM population >> human population

Brief ColdFire History

¢ 1979 — Motorola 68000 processors first ship
> Forward-thinking instruction set design
> Inspired by PDP-11 and others
> 32-bit architecture with 16-bit implementation

» Basis for early Sun workstations, Apple Lisa and
Macintosh, Commodore Amiga, and many more

¢ 1994 — ColdFire core developed
» 68000 ISA stripped down to simplify HW
¢ 2004 — Motorola Semiconductor Products

Sector spun off to create Freescale
Semiconductor

Brief ARM History

1978 — Acorn started
> Make 6502-based PCs
> Most sold in Great Britain

1983 — Development of Acorn RISC Machine
begins

» 32-bit RISC architecture

» Motivation: snubbed by Intel

1990 — Processor division spun off as ARM
> “Advanced RISC Machines”

1998 — Name changed to ARM Ltd.

Fact: ARM sells only IP

» All processors fabbed by customers

ARM=RISC, ColdFire=CISC?

¢ Instruction length
» ARM - fixed at 32 bits
» Simpler decoder
> ColdFire — variable at 16, 32, 48 bits
> Higher code density

¢ DMemory access
> ARM - load-store architecture
» ColdFire — some ALU ops can use memory
> But less than on 68000

¢ Both have plenty of registers

ARM Family Members

¢ ARM7/ ARMv3 (1995)

» Three stage pipeline
> ~80 MHz

> 0.06 MW/ MHz

> 0.97 MIPS /| MHz

» Usually no cache, no MMU, no MPU

¢ ARM9/ARMv4 and ARMv5 (1997)
» Five stage pipeline
> ~150 MHz
> 0.19 mW / MHz + cache
> 1.1 MIPS /| MHz
> 4-16 KB caches, MMU or MPU

More ARM Family

¢ ARM10/ ARMv5 (1999)
» Six-stage pipeline
> ~260 MHz
> 0.5 mW/MHz + cache
> 1.3 MIPS /| MHz
> 16-32 KB caches, MMU or MPU

¢ ARM11/ ARMv6 (2003)
» Eight-stage pipeline
> >335 MHz
> 0.4 mW / MHz + cache
> 1.2 MIPS /| MHz
>

configurable caches, MMU

Newer ARM Chips: Cortex

¢ ARMv7
¢ Cortex-AS8

» Superscalar
> 1GHzat<04W
¢ Cortex-A9

» Superscalar, out of order
» Can be multiprocessor
> This is the iPad processor
¢ Cortex-R4 — real-time systems
» So far, not very popular

* 6 O

Cortex Continued

Cortex-M0, M1, M3, M4 — small systems
> Intended to replace ARM7TDMI

> Intended to kill 8-bit and 16-bit CPUs in new
designs

» Most variants execute only Thumb-2 code
> Some are below $1 per chip

MO is really small
» ~12,000 gates

M1 is intended for FPGA targets
M3 is a microcontroller chip
M4 is faster, up to a few hundred MHz

Register Files

¢ Both ColdFire and ARM

>
>

16 registers available in user mode
Each register is 32 bits

¢ ColdFire

> AT — always the stack pointer

» Program counter not part of the register file
¢ ARM
> r13 — stack pointer by convention
> r14 —link register by convention: stores return

address of a called function
r15 — always the program counter

ColdFire Registers

31

31

DO
D1
D2
D3
D4
D5
D6
D7

AO
A1l
A2
A3
A4
A5
A6
A7
PC
CCR

Data registers

Address registers

Stack pointer
Program counter
Condition code register

ARM Banked Registers

¢

¢ o

37 total registers
» Only 18 available at any given time
> 16 + cpsr + spsr
» cpsr = current program status register
> spsr = saved program status register

Some register names refer to different
physical registers in different modes

Other registers shared across all modes
» E.g.r0-r6, cpsr
Why is banking supported?

Banked registers seem to be going away
> Thumb-2 doesn’t have it

ARM state general registers and program counter

System and User FIQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
rd ro r5 r5 r5 r5
6 6 ré 6 6 6
r7 r7 r7 r7 r7 r7
r8 r8_fig r8 r8 r8 r8
r9 r9_fiq r9 r9 9 r9
r10 r10_fiq r10 r10 r10 r10
r11 r11_fiq r11 r11 r11 r11
r2 r12_fiq ri2 r12 r2 r2
r13 r13_fiq r13_svc r13_abt r13_irq r13 _und
r14 r14_fiq ri4_svc r14_abt r14_irq r14_und
r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)
ARM state program status registers
CPSR CPSR CPSR CPSR CPSR CPSR
SPSR fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

ColdFire Instructions

¢ Classic two address code

int sum (int a, int b)

{

return a + b;

| Jdest
link a6, #0 ,

add.1l dl,do
unlk a6

ARM Instructions

¢ Classic three address code

int sum (int a, int b)
{

return a + b;

}
00000008 <sum>:

8: 0800001 ad
c: el2fffle

MSP430 Instructions

¢ Two address code

int sum (int a,

{

int b)

return a + b;

}

sum:
add
ret

rl4,

rl5

Now “int” is 16 bits,
so we’ re only
getting half as much
work done

AVR Instructions

¢ Two address code

int sum (int a,

{

int b)

return a + b;

}

sum:
add
adc
mov
mov
ret

r22,r24
r23,r25
r24,r22
r25,r23

Again “int” is 16 bits
But why is the code
gross?

sum:
add
adc
adc
adc
mov
mov
mov
mov

ret

32-bit Add on AVR

rl8,r22
rl9,r23
r20,r24
r2l1l,r25
r22,rl8
r23,rl9
r24,r20
r25,r21

Ugh!

8-bit processors can

waste a lot of cycles
doing this kind of thing

int smul (int x, int y)

{

return x*y;

¢ ColdFire code:

smul :
link a6, #0
muls.l dl,do
unlk a6

rts

¢ ARM7

smul :
mul r0, rl, rO
bx 1lr

¢ Baseline AVR

smul:
rcall mulhi3
ret

¢ ATmega128 (largish AVR):

smul :

mul r22,r24
movw rl8,r0
mul r22,r25
add rl9,r0
mul r23,r24
add rl9,zx0
clr ril

movw r24,rl8

ret

int sdiv (int x, int y)

{

return x/y;

¢ ColdFire code:

sdiv:
link a6, #0
divs.1l dl,do
unlk a6

rts

¢ On ARM7

sdiv:
str lrr [Spl #_4] !
bl divsi3

1dr pc, [sp], #4

¢ OnAVR

sdiv:
rcall divmodhié
mov r25,r23
mov r24 ,r22

ret

ARM Integrated Shifting

¢ qut in§t|"‘uctions,§:an use a barrel
shift unit for free

» Improves code density?

int foo (int a, int b) {
return a + (b << 5); }

00000000 <foo>:

O: e0800281 add =0, r0O, rl,
1sl #5
4. el2fffle bx 1lr

» What are the costs of this design
decision?

ARM Conditional Execution

L 4

L 4

When condition is false, squash the
executing instruction

Supports implementing (simple)
conditional constructs without branches
» Helps avoid pipeline stalls

» Compensates for lack of branch prediction
in low-end processors

Unique ARM feature: Almost all
instructions can be conditional

Suffixes in instruction mnemonics
indicate conditional execution

» add — executes unconditionally

» addeq — executes when the Z flag is set

Conditional Example

int max (int a, int b)
{
if (a>b) return a;

return b;

000000bc <max>:
bec: el500001 cmp r0, rl
cO: bla00001 movlt r0, rl
cd: el2fffle bx 1r

Another example: GCD

int ged (int i, int j)
{
while (i '= j) {
if (1>3) {
i-=3;
} else {
J -= 1;
}
}

return i;

}

000000d4 <gcd>:
d4:
d8:
dc:
el:
ed:
e8:
ec:
£f0:

GCD assembly

el510000
0l2fffle
el510000
b0610000
a0601001
el510000
lafffffa
el2fffle

cmp
bxeq
cmp
rsblt
rsbge
cmp
bne
bx

rl,
1lr

rl,
r0,
rl,
rl,

r0

r0
rl, r0
r0, rl
r0

dc <gcd+0x8>

1lr

GCD on ColdFire

gcd:

link
cmp .
beq.
cmp .
ble.
sub.
bra.
sub.
cmp .
bne.
unlk
rts

W HH®O DO

a6, #0
dl,do
*+16
dl,do
*+6

dl,do
*44

do,dl
dl,do
*-12
a6

Multiply and Accumulate

¢ DSP codes such as FIR and IIR typically boil
down to repeated multiply and add

int inner (int k, int j) {
int 1;
int result = 0;
for (i=0; i < 10; i++) {
result += datalk][j] *
coeff[k][1i];
}

return result;

Multiply and Accumulate

00000000 <inner>:
0:

4.

8:

C:
10:
14:
18:
lc:
20 :

38:
3c:
40:
44 .

e0800100
e59£3034
e0811200
e52de004
e793el101
e59£3028
e3a0c000
e0831180
ela0200c
e2822001
e4913004
e352000a
e02cce93
1a000007
ela0000c
e49d£004
00000140
00000000

add rO0, r0, r0, 1lsl #2

ldr r3, [pc, #52]; 40 <.text+0x40>

add rl, rl, r0, 1lsl #4
str lr, [sp, #-4]!
ldr lr, [xr3, rl, 1sl #2]

ldr r3, [pc, #40] ; 44 <.text+0x44>

mov ip, #0 ; 0x0
add rl, r3, r0, 1lsl #3
mov r2, ip
r2, #1 ; Ox1
[rl], #4
#10 ; Oxa
ip, r3, 1lr, ip
24 <inner+0x24>
mov r0, ip
ldr pc, [spl, #4
andeq r0, r0, r0, asr #2
andeqg r0, r0, rO

*® 6 O

Multiple-Register Transfer

ColdFire:
movem.l d0-d7/a0-a6, (a7)

ARM:
stmdb sp!, {r4, r5, r6, r7, r8, r9, sl1, fp, 1lr}
Improves code density
More efficient — why?
Main disadvantages?
» Solutions?

ARM: Thumb

¢ Alternate instruction set supported by many
ARM processors

¢ 16-bit fixed size instructions

» Only 8 registers easily available
> Saves 2 bits
> Registers are still 32 bits

> Drops 3" operand from data operations
» Saves 5 bits

» Only branches are conditional
» Saves 4 bits

» Drops barrel shifter
» Saves 7 bits

ARM: Thumb

Natural evolution of RISC ideas for
embedded processors

> Low gate count in decode logic no longer as
important

> Still, decode shouldn’t be too hard

» Want compact instructions to keep I-fetch costs
low

Why use Thumb?
» 30% higher code density

» Potentially higher performance on systems with
16-bit memory bus

Why not use Thumb?

» Performance may suffer on systems with 32-bit
memory bus

Thumb Continued

Thumb implementation

» Thumb bit in the cpsr tells the CPU which mode
to execute in

> In Thumb mode, each instruction is decoded to
an ARM instruction and then executed

ARM-Thumb “Interworking”:

» Calling between ARM and thumb code
» Compiler will do the dirty work if you pass it the
right flags

How to decide which routines to compile as
ARM vs. Thumb?

Thumb2: Supposed to give code density

benefit w/o performance loss

» So theoretically Thumb and ARM support can be
dropped from future chips

¢ o

BCM2835

This is the Raspberry Pi chip

ARM1176JZ-F
> ARM and Thumb ISAs, no thumb2
» Jazelle — instructions for accelerating JVMs
> DBX — direct bytecode execution
» FPU
> DSP extensions

Also:

> 256 MB of SRAM

» Proprietary GPU

> UARTSs, SPI, DMA, mass media controller, GPIO,
clocks, PWM units, USB

What’s missing?

Summary

There’ s wide diversity in what the HW will
do for you

ARM and ColdFire are important embedded
architectures

> Both are “modern”
» Worth looking at in detail

MSP430 is extremely low power
> But not clear how it will compete with newer ARM
devices
AVR has a large entrenched market

> Low-end AVRs are really tiny and will remain
popular

» Higher-end AVRs are in a difficult position
against the Cortex MO

