
Last Time

u  Embedded systems introduction
Ø  Definition of embedded system
Ø  Common characteristics
Ø  Kinds of embedded systems
Ø  Crosscutting issues
Ø  Software architectures
Ø  Choosing a processor
Ø  Choosing a language
Ø  Choosing an OS

Today

u  ARM and ColdFire
Ø  History
Ø  Variations
Ø  ISA (instruction set architecture)
Ø  Both 32-bit

u  Also some examples from
Ø  AVR: 8-bit
Ø  MSP430: 16-bit

Embedded Diversity

u  There is a lot of diversity in what embedded
processors can accomplish, and how they
accomplish it

u  Example
Ø  General purpose processors can perform

multiplication in a single cycle
Ø  Mid-grade microcontrollers will have a HW

multiply unit, but it’ll be slow
Ø  Low-end microcontrollers have no multiplier at

all

Lots of chips…
u  Freescale – top embedded processor

manufacturer with ~28% of total market
Ø  HC05, HC08, HC11, HC12, HC16, ColdFire, PPC,

etc.
Ø  Largest supplier of semiconductors for the

automobile market

u  ARM – the most popular 32-bit architecture
Ø  By 2012 ARM had shipped 30 billion processors
Ø  ARM population >> human population

Brief ColdFire History

u  1979 – Motorola 68000 processors first ship
Ø  Forward-thinking instruction set design

Ø  Inspired by PDP-11 and others
Ø  32-bit architecture with 16-bit implementation

Ø  Basis for early Sun workstations, Apple Lisa and
Macintosh, Commodore Amiga, and many more

u  1994 – ColdFire core developed
Ø  68000 ISA stripped down to simplify HW

u  2004 – Motorola Semiconductor Products
Sector spun off to create Freescale
Semiconductor

Brief ARM History
u  1978 – Acorn started

Ø  Make 6502-based PCs
Ø  Most sold in Great Britain

u  1983 – Development of Acorn RISC Machine
begins
Ø  32-bit RISC architecture
Ø  Motivation: snubbed by Intel

u  1990 – Processor division spun off as ARM
Ø  “Advanced RISC Machines”

u  1998 – Name changed to ARM Ltd.

u  Fact: ARM sells only IP
Ø  All processors fabbed by customers

ARM=RISC, ColdFire=CISC?

u  Instruction length
Ø  ARM – fixed at 32 bits

Ø  Simpler decoder
Ø  ColdFire – variable at 16, 32, 48 bits

Ø  Higher code density
u  Memory access

Ø  ARM – load-store architecture
Ø  ColdFire – some ALU ops can use memory

Ø  But less than on 68000
u  Both have plenty of registers

ARM Family Members
u  ARM7 / ARMv3 (1995)

Ø  Three stage pipeline
Ø  ~80 MHz
Ø  0.06 mW / MHz
Ø  0.97 MIPS / MHz
Ø  Usually no cache, no MMU, no MPU

u  ARM9 / ARMv4 and ARMv5 (1997)
Ø  Five stage pipeline
Ø  ~150 MHz
Ø  0.19 mW / MHz + cache
Ø  1.1 MIPS / MHz
Ø  4-16 KB caches, MMU or MPU

More ARM Family
u  ARM10 / ARMv5 (1999)

Ø  Six-stage pipeline
Ø  ~260 MHz
Ø  0.5 mW / MHz + cache
Ø  1.3 MIPS / MHz
Ø  16-32 KB caches, MMU or MPU

u  ARM11 / ARMv6 (2003)
Ø  Eight-stage pipeline
Ø  > 335 MHz
Ø  0.4 mW / MHz + cache
Ø  1.2 MIPS / MHz
Ø  configurable caches, MMU

Newer ARM Chips: Cortex
u  ARMv7
u  Cortex-A8

Ø  Superscalar
Ø  1 GHz at < 0.4 W

u  Cortex-A9
Ø  Superscalar, out of order
Ø  Can be multiprocessor
Ø  This is the iPad processor

u  Cortex-R4 – real-time systems
Ø  So far, not very popular

Cortex Continued

u  Cortex-M0, M1, M3, M4 – small systems
Ø  Intended to replace ARM7TDMI
Ø  Intended to kill 8-bit and 16-bit CPUs in new

designs
Ø  Most variants execute only Thumb-2 code
Ø  Some are below $1 per chip

u  M0 is really small
Ø  ~12,000 gates

u  M1 is intended for FPGA targets
u  M3 is a microcontroller chip
u  M4 is faster, up to a few hundred MHz

Register Files

u  Both ColdFire and ARM
Ø  16 registers available in user mode
Ø  Each register is 32 bits

u  ColdFire
Ø  A7 – always the stack pointer
Ø  Program counter not part of the register file

u  ARM
Ø  r13 – stack pointer by convention
Ø  r14 – link register by convention: stores return

address of a called function
Ø  r15 – always the program counter

ColdFire Registers

ARM Banked Registers

u  37 total registers
Ø  Only 18 available at any given time

Ø  16 + cpsr + spsr
Ø  cpsr = current program status register
Ø  spsr = saved program status register

u  Some register names refer to different
physical registers in different modes

u  Other registers shared across all modes
Ø  E.g. r0-r6, cpsr

u  Why is banking supported?
u  Banked registers seem to be going away

Ø  Thumb-2 doesn’t have it

ColdFire Instructions

u  Classic two address code

int sum (int a, int b)
{
 return a + b;
}

link a6,#0
add.l d1,d0
unlk a6

dest

src1 src2

ARM Instructions

u  Classic three address code

int sum (int a, int b)
{
 return a + b;
}

00000008 <sum>:
 8: e0800001 add r0, r0, r1
 c: e12fff1e bx lr

dest src1

src2

MSP430 Instructions

u  Two address code

int sum (int a, int b)
{
 return a + b;
}

sum:
 add r14, r15
 ret

dest

src1 src2

Now “int” is 16 bits,
so we’re only
getting half as much
work done

AVR Instructions

u  Two address code

int sum (int a, int b)
{
 return a + b;
}

sum:
 add r22,r24
 adc r23,r25
 mov r24,r22
 mov r25,r23
 ret

Again “int” is 16 bits

But why is the code
gross?

32-bit Add on AVR

sum:
 add r18,r22
 adc r19,r23
 adc r20,r24
 adc r21,r25
 mov r22,r18
 mov r23,r19
 mov r24,r20
 mov r25,r21
 ret

Ugh!

8-bit processors can
waste a lot of cycles
doing this kind of thing

int smul (int x, int y)
{

 return x*y;
}

u  ColdFire code:

smul:
 link a6,#0
 muls.l d1,d0
 unlk a6
 rts

u  ARM7

smul:
 mul r0, r1, r0
 bx lr

u  Baseline AVR

smul:
 rcall __mulhi3
 ret

u  ATmega128 (largish AVR):

smul:
 mul r22,r24
 movw r18,r0
 mul r22,r25
 add r19,r0
 mul r23,r24
 add r19,r0
 clr r1
 movw r24,r18
 ret

int sdiv (int x, int y)
{

 return x/y;
}

u  ColdFire code:

sdiv:
 link a6,#0
 divs.l d1,d0
 unlk a6
 rts

u  On ARM7
sdiv:

 str lr, [sp, #-4]!
 bl __divsi3
 ldr pc, [sp], #4

u  On AVR
sdiv:

 rcall __divmodhi4
 mov r25,r23
 mov r24,r22
 ret

ARM Integrated Shifting
u  Most instructions can use a barrel

shift unit “for free”
Ø  Improves code density?

int foo (int a, int b) {
 return a + (b << 5); }

00000000 <foo>:
 0: e0800281 add r0, r0, r1,

lsl #5
 4: e12fff1e bx lr

Ø  What are the costs of this design
decision?

ARM Conditional Execution
u  When condition is false, squash the

executing instruction
u  Supports implementing (simple)

conditional constructs without branches
Ø  Helps avoid pipeline stalls
Ø  Compensates for lack of branch prediction

in low-end processors
u  Unique ARM feature: Almost all

instructions can be conditional
u  Suffixes in instruction mnemonics

indicate conditional execution
Ø  add – executes unconditionally
Ø  addeq – executes when the Z flag is set

Conditional Example

int max (int a, int b)
{
 if (a>b) return a;
 return b;
}

000000bc <max>:
 bc: e1500001 cmp r0, r1
 c0: b1a00001 movlt r0, r1
 c4: e12fff1e bx lr

Another example: GCD

int gcd (int i, int j)
{
 while (i != j) {
 if (i>j) {
 i -= j;
 } else {
 j -= i;
 }
 }
 return i;
}

GCD assembly

000000d4 <gcd>:
 d4: e1510000 cmp r1, r0
 d8: 012fff1e bxeq lr
 dc: e1510000 cmp r1, r0
 e0: b0610000 rsblt r0, r1, r0
 e4: a0601001 rsbge r1, r0, r1
 e8: e1510000 cmp r1, r0
 ec: 1afffffa bne dc <gcd+0x8>
 f0: e12fff1e bx lr

GCD on ColdFire
gcd:
 link a6,#0
 cmp.l d1,d0
 beq.s *+16
 cmp.l d1,d0
 ble.s *+6
 sub.l d1,d0
 bra.s *+4
 sub.l d0,d1
 cmp.l d1,d0
 bne.s *-12
 unlk a6
 rts

Multiply and Accumulate
u  DSP codes such as FIR and IIR typically boil

down to repeated multiply and add

int inner (int k, int j) {
 int i;
 int result = 0;
 for (i=0; i < 10; i++) {

 result += data[k][j] *
 coeff[k][i];
 }
 return result;
}

Multiply and Accumulate
00000000 <inner>:
 0: e0800100 add r0, r0, r0, lsl #2
 4: e59f3034 ldr r3, [pc, #52] ; 40 <.text+0x40>
 8: e0811200 add r1, r1, r0, lsl #4
 c: e52de004 str lr, [sp, #-4]!
 10: e793e101 ldr lr, [r3, r1, lsl #2]
 14: e59f3028 ldr r3, [pc, #40] ; 44 <.text+0x44>
 18: e3a0c000 mov ip, #0 ; 0x0
 1c: e0831180 add r1, r3, r0, lsl #3
 20: e1a0200c mov r2, ip
 24: e2822001 add r2, r2, #1 ; 0x1
 28: e4913004 ldr r3, [r1], #4
 2c: e352000a cmp r2, #10 ; 0xa
 30: e02cce93 mla ip, r3, lr, ip
 34: 1a000007 bne 24 <inner+0x24>
 38: e1a0000c mov r0, ip
 3c: e49df004 ldr pc, [sp], #4
 40: 00000140 andeq r0, r0, r0, asr #2
 44: 00000000 andeq r0, r0, r0

Multiple-Register Transfer
u  ColdFire:
 movem.l d0-d7/a0-a6,(a7)

u  ARM:
 stmdb sp!, {r4, r5, r6, r7, r8, r9, sl, fp, lr}
u  Improves code density
u  More efficient – why?
u  Main disadvantages?

Ø  Solutions?

ARM: Thumb
u  Alternate instruction set supported by many

ARM processors
u  16-bit fixed size instructions

Ø  Only 8 registers easily available
Ø  Saves 2 bits
Ø  Registers are still 32 bits

Ø  Drops 3rd operand from data operations
Ø  Saves 5 bits

Ø  Only branches are conditional
Ø  Saves 4 bits

Ø  Drops barrel shifter
Ø  Saves 7 bits

ARM: Thumb
u  Natural evolution of RISC ideas for

embedded processors
Ø  Low gate count in decode logic no longer as

important
Ø  Still, decode shouldn’t be too hard
Ø  Want compact instructions to keep I-fetch costs

low
u  Why use Thumb?

Ø  30% higher code density
Ø  Potentially higher performance on systems with

16-bit memory bus
u  Why not use Thumb?

Ø  Performance may suffer on systems with 32-bit
memory bus

Thumb Continued
u  Thumb implementation

Ø  Thumb bit in the cpsr tells the CPU which mode
to execute in

Ø  In Thumb mode, each instruction is decoded to
an ARM instruction and then executed

u  ARM-Thumb “Interworking”:
Ø  Calling between ARM and thumb code
Ø  Compiler will do the dirty work if you pass it the

right flags
u  How to decide which routines to compile as

ARM vs. Thumb?
u  Thumb2: Supposed to give code density

benefit w/o performance loss
Ø  So theoretically Thumb and ARM support can be

dropped from future chips

BCM2835
u  This is the Raspberry Pi chip
u  ARM1176JZ-F

Ø  ARM and Thumb ISAs, no thumb2
Ø  Jazelle – instructions for accelerating JVMs

Ø  DBX – direct bytecode execution
Ø  FPU
Ø  DSP extensions

u  Also:
Ø  256 MB of SRAM
Ø  Proprietary GPU
Ø  UARTs, SPI, DMA, mass media controller, GPIO,

clocks, PWM units, USB
u  What’s missing?

Summary
u  There’s wide diversity in what the HW will

do for you
u  ARM and ColdFire are important embedded

architectures
Ø  Both are “modern”
Ø  Worth looking at in detail

u  MSP430 is extremely low power
Ø  But not clear how it will compete with newer ARM

devices
u  AVR has a large entrenched market

Ø  Low-end AVRs are really tiny and will remain
popular

Ø  Higher-end AVRs are in a difficult position
against the Cortex M0

