Sample Mid-Term Exam 2

CS 5510/6510, Fall 2017
November 3

Name: \qquad
Instructions: You have eighty minutes to complete this open-book, open-note, closed-interpreter exam. Please write all answers in the provided space, plus the back of the exam if necessary.
Note on actual exam: The exam will refer to the lambda-k.rkt interpreter. If you need the interpreter for reference to answer the questions, please bring a copy (paper or electronic) with you.

1) [15 pts$]$ Which of the following produce different results in a eager language and a lazy language? Both produce the same result if they both produce the same number or they both produce a procedure (even if the procedure doesn't behave exactly the same when applied), but they can differ in errors reported.
a) $\{\{1$ lambda $\{y\}$ 12\} $\{12\}\}$
b) $\{1$ ambda $\{x\}$ \{\{lambda $\{y\}$ 12\} \{1 2$\}\}\}$
c) $\{+1$ \{lambda $\{y\} 12\}\}$
d) $\{+1$ \{\{lambda $\{x\}$ \{+ 1 13\}\} \{+ 1 \{lambda \{z\} 12\}\}\}\}
e) $\{+1$ \{\{lambda $\{x\}\{+\mathrm{x}$ 13\}\} $\{+1$ \{lambda \{z\} 12\}\}\}\}
2) $[25 \mathrm{pts}]$ Given the type rules

$$
\begin{gathered}
{[\ldots \mathbf{x} \leftarrow \tau \ldots] \vdash \mathbf{x}: \tau \quad \Gamma \vdash 1: \text { num }} \\
\frac{\Gamma \vdash \mathbf{e}_{1}: \text { num } \Gamma \vdash \mathbf{e}_{2}: \text { num }}{\Gamma \vdash\left\{+\mathbf{e}_{1} \mathbf{e}_{2}\right\}: \text { num }} \\
\left.\Gamma \vdash\left\{\operatorname{lambda}\left\{\left[\mathbf{x}: \tau_{1}\right] \vdash \mathbf{e}: \tau_{2}\right]\right\} \mathbf{e}\right\}:\left(\tau_{1} \rightarrow \tau_{2}\right) \\
\end{gathered}
$$

in one of the following expressions, the \qquad can be filled in with a type so that the resulting expression has a type in the enmpty environment, while there is no type for the \qquad that causes the other to have a type. Pick the right expression and show a derivation tree (which is a trace of typecheck that's written in the style as the type rules above) demonstrating that the chosen expression has a type.

```
{{lambda {[x : ____]} {+ x 1}} x}
{lambda {[x : ____]} {+ {x 1} 1}}
```

Note that your answer should not include symbols like Γ, τ, or e, except when used as designated abbreviations, since those are meta-variables that are replaced by concrete environments, types, and expressions in the derivation tree.
3) $[60 \mathrm{pts}]$ Given the following expression:

```
{{lambda {x} {x x}}
    {lambda {y} 12}}
```

Describe a trace of the evalaution in terms of arguments to interp and continue functions for every call of each in the lambda-k.rkt interpreter. (There will be 7 calls to interp and 5 calls to continue.) The interp function takes three arguments - an expression, an environment, and a continuation so show all three for each interp call. The continue function takes two arguments - a continuation and a value - so show both for each continue call. Represent continuations using records.

Answers

1) a and d.
2)

$$
\frac{\frac{\Gamma_{1} \vdash \mathrm{x}:(\text { num } \rightarrow \text { num })}{\Gamma_{1} \vdash\{\mathrm{x} 1\}: \text { num }} \frac{\Gamma_{1}: \text { num }}{\Gamma_{1}=[\mathrm{x} \leftarrow(\text { num } \rightarrow \text { num })] \vdash\{+\{\mathrm{x} 1\} 1\}: \text { num }} \Gamma_{1} \vdash 1: \text { num }}{\emptyset \vdash\{\text { lambda }\{[\mathrm{x}:(\text { num } \rightarrow \text { num }))\}\}\{+\{\mathrm{x} 1\} 1\}\}:((\text { num } \rightarrow \text { num }) \rightarrow \text { num })}
$$

3)

$$
\begin{aligned}
& \text { interp } \operatorname{expr}=\{\{\text { lambda }\{\mathrm{x}\}\{\mathrm{x} x\}\}\{\text { lambda }\{\mathrm{y}\} 12\}\} \\
& \text { env }=\text { mt-env } \\
& \mathrm{k}=(\text { doneK }) \\
& \text { interp expr }=\{\text { lambda }\{\mathrm{x}\}\{\mathrm{x} \quad \mathrm{x}\}\} \\
& \text { env }=\text { mt-env } \\
& \mathrm{k}=\left(\operatorname{appArgK}\{\text { lambda }\{\mathrm{y}\} 12\} \text { mt-env (doneK)) }=k_{1}\right. \\
& \text { cont } \begin{aligned}
& \mathrm{k}=\left(\operatorname{appArgK}\{\text { lambda }\{\mathrm{y}\} 12\} \text { mt-env (doneK)) or } k_{1}\right. \\
& \mathrm{val}=\left(\operatorname{closV}{ }^{\prime} \mathrm{x}\{\mathrm{x} \mathrm{x}\}\right. \\
&\mathrm{mt}-\mathrm{env})=v_{1}
\end{aligned} \\
& \text { interp expr }=\{\text { lambda }\{y\} 12\} \\
& \text { env }=\text { mt-env } \\
& \mathrm{k} \quad=\left(\text { doAppK } v_{1}(\text { doneK })\right)=k_{2} \\
& \text { cont } \mathrm{k}=\left(\text { doAppK } v _ { 1 } \left(\text { doneK)) or } k_{2}\right.\right. \\
& \mathrm{val}=\left(\mathrm{closV}{ }^{\prime} \mathrm{y} 12 \mathrm{mt}-\mathrm{env}\right)=v_{2} \\
& \text { interp expr }=\left\{\begin{array}{ll}
\mathrm{x} & \mathrm{x}
\end{array}\right\} \\
& \text { env }=\left(\text { extend-env (bind ' } \mathrm{x} v_{2} \text {) mt-env) }=e_{1}\right. \\
& \mathrm{k} \quad=\text { (doneK) } \\
& \text { interp expr }=\mathrm{x} \\
& \text { env }=e_{1} \\
& \mathrm{k} \quad=\left(\operatorname{appArgk} \underset{\mathrm{x}}{ } e_{1}(\text { doneK })\right)=k_{3} \\
& \text { cont } \mathrm{k}=\left(\operatorname{appArgK} \mathrm{x} e_{1}(\text { doneK })\right) \text { or } k_{3} \\
& \text { val }=v_{2} \\
& \text { interp expr }=\mathrm{x} \\
& \text { env }=e_{1} \\
& \mathrm{k} \quad=\left(\text { doAppK } v_{2}(\text { doneK })\right)=k_{4} \\
& \text { cont } \mathrm{k}=\left(\text { doAppK } v_{2}(\text { doneK })\right) \text { or } k_{4} \\
& \text { val }=v_{2} \\
& \text { interp expr }=12
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{env}=\text { (extend-env (bind 'y } v_{2} \text {) mt-env) } \\
& \mathrm{k}=(\text { doneK) } \\
& \text { cont } \quad \mathrm{k}=\text { (doneK) } \\
& \mathrm{val} \\
&=(\text { numV 12) }
\end{aligned}
$$

