
Sample Mid-Term Exam 2

CS 5510/6510, Fall 2017

November 3

Name:

Instructions: You have eighty minutes to complete this open-book, open-note, closed-interpreter exam.
Please write all answers in the provided space, plus the back of the exam if necessary.
Note on actual exam: The exam will refer to the lambda-k.rkt interpreter. If you need the interpreter
for reference to answer the questions, please bring a copy (paper or electronic) with you.

1) [15 pts] Which of the following produce different results in a eager language and a lazy language?
Both produce the same result if they both produce the same number or they both produce a procedure
(even if the procedure doesn’t behave exactly the same when applied), but they can differ in errors
reported.

a) {{lambda {y} 12} {1 2}}

b) {lambda {x} {{lambda {y} 12} {1 2}}}

c) {+ 1 {lambda {y} 12}}

d) {+ 1 {{lambda {x} {+ 1 13}} {+ 1 {lambda {z} 12}}}}

e) {+ 1 {{lambda {x} {+ x 13}} {+ 1 {lambda {z} 12}}}}

1



2) [25 pts] Given the type rules

[. . .x← τ . . .] ` x : τ Γ ` 1 : num
Γ ` e1 : num Γ ` e2 : num

Γ ` {+ e1 e2} : num

Γ[x← τ1] ` e : τ2
Γ ` {lambda {[x : τ1]} e} : (τ1 → τ2)

Γ ` e1 : (τ1 → τ2) Γ ` e2 : τ1
Γ ` {e1 e2} : τ2

in one of the following expressions, the ____ can be filled in with a type so that the resulting expression
has a type in the enmpty environment, while there is no type for the ____ that causes the other to
have a type. Pick the right expression and show a derivation tree (which is a trace of typecheck that’s
written in the style as the type rules above) demonstrating that the chosen expression has a type.

{{lambda {[x : ____]} {+ x 1}} x}

{lambda {[x : ____]} {+ {x 1} 1}}

Note that your answer should not include symbols like Γ, τ , or e, except when used as designated
abbreviations, since those are meta-variables that are replaced by concrete environments, types, and
expressions in the derivation tree.

2



3) [60 pts] Given the following expression:

{{lambda {x} {x x}}

{lambda {y} 12}}

Describe a trace of the evalaution in terms of arguments to interp and continue functions for every
call of each in the lambda-k.rkt interpreter. (There will be 7 calls to interp and 5 calls to continue.)
The interp function takes three arguments — an expression, an environment, and a continuation —
so show all three for each interp call. The continue function takes two arguments — a continuation
and a value — so show both for each continue call. Represent continuations using records.

3



Answers

1) a and d.

2)
Γ1 ` x : (num→ num) Γ1 ` 1 : num

Γ1 ` {x 1} : num Γ1 ` 1 : num
Γ1 = [x← (num→ num)] ` {+ {x 1} 1} : num

∅ ` {lambda {[x : (num→ num))}} {+ {x 1} 1}} : ((num→ num)→ num)

3)

interp expr = {{lambda {x} {x x}} {lambda {y} 12}}
env = mt-env

k = (doneK)

interp expr = {lambda {x} {x x}}
env = mt-env

k = (appArgK {lambda {y} 12} mt-env (doneK)) = k1

cont k = (appArgK {lambda {y} 12} mt-env (doneK)) or k1

val = (closV ’x {x x} mt-env) = v1

interp expr = {lambda {y} 12}
env = mt-env

k = (doAppK v1 (doneK)) = k2

cont k = (doAppK v1 (doneK)) or k2
val = (closV ’y 12 mt-env) = v2

interp expr = {x x}
env = (extend-env (bind ’x v2) mt-env) = e1
k = (doneK)

interp expr = x

env = e1
k = (appArgk x e1 (doneK)) = k3

cont k = (appArgK x e1 (doneK)) or k3
val = v2

interp expr = x

env = e1
k = (doAppK v2 (doneK)) = k4

cont k = (doAppK v2 (doneK)) or k4
val = v2

interp expr = 12

4



env = (extend-env (bind ’y v2) mt-env)

k = (doneK)

cont k = (doneK)

val = (numV 12)

5


