™ M 7 World

W
“

A
—
threads,

virtual memory,

Applications

gece——> \

—

devices,
process isolation,

Lwindows

Operating
System

/
processors,

o memory,
« .
3 < interrupts,
O
= modes,
I

\ displays

OS vs. Kernel

OS vs. Kernel

Operating System

Kernel Features

* Processes for running multiple programs/instances
* Threads for managing CPUs

* Virtual memory for allocating memory

- Sockets for networking

* Filesystems' for persistent storage

- Device drivers for plugging in new functionality

* Users and groups for controlling permissions

* Windows for managing screen real esate and input

T usually pluggable for different formats and devices

" to varying degrees

Kernel vs. User Code

When you turn on a processor, instructions can do
anything: the processor starts in prviledged mode

0x36462

00

mov 42, 0x75462

0x75462
42

Details here are inspired by x86, but not true-to-life

Kernel vs. User Code

One of the things you can do in prviledged mode is
change the way that virtual addresses are mapped to
physical memory

0x36462
O0x75xxx 43
mov 43, 0x75462 =
0x36xxx 0x75462
42

So, you can hide memory from unpriviledged code

but, before you do that...
9-10

Kernel vs. User Code

A certain area in memory, not normally made accessible,
contains a table of functions called for special events:

0x100
on _divide by zero

on_sysenter

The sysenter instruction jumps to one of those

The jump ignores address remappings and switches back
to priviledged mode

Control the table, and you control the way back to priviledged mode

11

System Calls

A process asks the OS to do something by making a
system call:

mov $57, %EAX
sysenter

This is a kind of function call, while also switching to
priviledged mode

Instead of assembly code, you normally use a wrapper C function

12-13

System Calls

Some (C wrappers for) typical system calls on Unix:

create a process: fork ()

open a file: open ()

allocate memory: mmap ()

create a network connection: connect ()

A system call’s man page will say " (2)

14

Some System Applications
A command-line shell is just a program:

* It uses fork () to create new processes

Windows: CreateProcess ()

* A new processes uses execve () to load a program
into the process

Windows: CreateProcess () does that, too

* The execve () system call also handles
command-line arguments

Windows: CreateProcess () does that, too

see execC.C

15-16

Some System Applications

A desktop GUI is just a program:

* It uses open () to read directory and file information

* It uses other system calls™ to open windows, draw on
them, and receive mouse events

T or communicates with a semi-priviledged window-manager program

* If you double-click an application, it uses fork (), etc.

seedir.c

17-18

Some System Applications

A debugger like gdb is just a program:

Of course, it uses fork () ...

It uses a system call to attach to a process

Based the process’s user, the request may be declined

* It uses various system calls to inspect a process
* It uses various system calls to receive signals

O e.g., “the process seg faulted”
g P g

each process has a table of signal callbacks

see signal.c

19-20

Some System Applications

A web browser is just a program:

* It uses system calls like connect () to contacta
server

* It uses other system calls’ to open windows, draw on
them, and receive mouse events

T or communicates with a semi-priviledged window-manager program

* It runs Javascript program in the same way that our
interpreter runs MiniRacket programs

see connect.c

21-22

Writing Portable Applications

fopen("data.txt", "r");

——

main.c

FILE* fopen (char *name,
char *mode)

open (name, flag)

unix_file.c

FILE* fopen (char *name,
char *mode)

CreateFile (name,

win_file.c

23

Writing Portable Applications

#ifdef WIN32

#endif

#ifdef linux
... mmap(....)
#endif
#ifdef OS X
.... vm _allocate(....)
#endif

VirtualAlloc(....

)

main.cC

#ifdef is a last resort

24

25

Applications on Linux

Linux “proper” is just the kernel:
* Processes, users and groups, filesystems, etc.

* New devices and features are exposed through the
filesystem

e.g, cat /proc/cpuinfo

The kernel does not include graphics

26

Applications on Linux

A distribution pairs the kernel with particular
applications and libraries

Ubuntu

Debian
* Fedora

 Gentoo

These differ in look-and-feel, but they’re about the same to an application

developer

27

Applications on Linux

Core graphics functionality is provided by the
X Windowing System, a.k.a. XI |

X1 is just a program, and others connect to it

Program connections can even go across a network

seex1l.c

28-29

Applications on Linux
The X1 | primitive layer:

* Drawing:

X1 Modern

* GUIs: XCreateWindow ()

no buttons, menus, ...

30

Applications on Linux

31

Applications on Linux

System call wrappers,
traditional C functions

32

Applications on Linux

Communication among
applications

33

Applications on Linux

Modern C: reference
counting, objects, text

g
il

34

Applications on Linux

/

35

Applications on Linux

Typesetting

36

Applications on Linux

GUI widgets

37

Applications on Linux

In practice:

* First, you pick a set of libraries to build on

Gtk is just one option for GUIs, though probably the most popular

* Documentation is distributed among producers of
different libraries

* Usually, you can look at a library’s source code

With respect to documentation quality, this is both good and bad

38

39

Applications on Windows

Everything is built into Windows:
* Processes, users and groups, filesystems, etc.
* Graphical windows also primitive kernel objects

* Unicode wired deeply into the kernel

The Windows OS API is traditionally called Win32

40

Applications on Windows

Creating a button in Win32:

CreateWindow ("BUTTON", '"Click Me",
WS_CHILD | WS_CLIPSIBLINGS,

o, 0, 100, 50,
container, NULL, NULL, NULL);

Creating a Chinese button in Win32:

CreateWindowW (L"BUTTON", L"3TxE",
WS _CHILD | WS CLIPSIBLINGS,
0, 0, 100, 50,
container, NULL, NULL, NULL);

41

Applications on Windows

42

Applications on Windows

Processes and files
/ |

43

Applications on Windows

Drawing and text

44

Applications on Windows

45

Applications on Windows

Application

communication via
COM

46

Applications on Windows

Traditional C library
\

47

Applications on Windows

In practice:

* “Everything” is built in, but there are some choices

© Win32: C API
© MFC: C++ wrapper on Win32

Non-C languages are more common on Windows

* Documentation is centralized at MSDN

« COM is sometimes used to glue together applications

In contrast, stdio-based subprocesses are more common in Unix

48

Applications on Mac OS X

The Mac OS X kernel is called Mach
* Processes, memory management, message passing

* New devices/features accessed via message passing

The goal was to make the kernel as small as possible

50

Applications on Mac OS X

XNU is a Unix-like kernel layer on Mach

XNU

Mach

* Adds filesystems, users and groups, etc.

* Based on BSD

51

Applications on Mac OS X

Add system libraries and applications to XNU, and you
get Darwin

Darwin

XNU

Mach

This layer makes application development on Mac OS X feel like Unix

52

Applications on Mac OS X

53

Applications on Mac OS X

54

Applications on Mac OS X

55

Applications on Mac OS X

56

Applications on Mac OS X

¥ ot

57

Applications on Windows

In practice:

Major libraries packaged by Apple, usually one per goal

but legacy libraries are commonly in use: Carbon, QuickDraw, ATSUI
Documentation is centralized at Apple’s developer site

Library layers (e.g., Core Foundation) are commonly
referenced

feels more like Linux, less like Win32

GUIs usually written in Objective-C

... which is a hybrid of C and Smalltalk

58

Portable GUI Applications

Other options in place of Gtk/Pango/Cairo include Qt and wxWidgets

59

