Reference Counting And Cycles

An assighment can create a
cycle...




Reference Counting And Cycles

Adding a reference increments a
count




Reference Counting And Cycles

Lower-left records are
inaccessible, but not deallocated

1 In general, cycles break reference
counting




Garbage Collection

Garbage collection: a way to know whether a record
is accessible

* A record referenced by a register is live
* A record referenced by a live record is also live

* A program can only possibly use live records, because
there is no way to get to other records

* A garbage collector frees all records that are not live

* Allocate until we run out of memory, then run a
garbage collector to get more space
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Garbage Collection Algorithm

* Color all records white
* Color records referenced by registers gray
* Repeat until there are no gray records:

© Pick a gray record, r

© For each white record that r points to, make it
gray
© Color r black

* Deallocate all white records



Garbage Collection

All records are marked white




Garbage Collection

Mark records referenced by
registers as gray




Garbage Collection

Need to pick a gray record

Red arrow indicates the chosen
record
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Garbage Collection

Mark white records referenced
by chosen record as gray
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Garbage Collection

Mark chosen record black
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Garbage Collection

Start again: pick a gray record
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Garbage Collection

No referenced records; mark
black
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Garbage Collection

Start again: pick a gray record
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Garbage Collection

Mark white records referenced
by chosen record as gray
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Garbage Collection

Mark chosen record black
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Garbage Collection

Start again: pick a gray record
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Garbage Collection

®

No referenced white records;
mark black
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Garbage Collection

®

No more gray records; deallocate
white records

Cycles do not break garbage
collection
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Two-Space Copying Collectors

A two-space copying collector compacts memory as it
collects, making allocation easier.

Allocator:

* Partitions memory into to-space and from-space
* Allocates only in to-space

Collector:

* Starts by swapping to-space and from-space

 Coloring gray = copy from from=-space to
to-space

* Choosing a gray record = walk once though the new
to-space, update pointers
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Two-Space Collection

Left = from-space
Right = to-space
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Two-Space Collection

Mark gray = copy and leave
forward address
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Two-Space Collection

Choose gray by walking through
to-space
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Two-Space Collection

Mark referenced as gray

25



Two-Space Collection

Mark black = move gray-choosing
arrow
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Two-Space Collection

Nothing to color gray; increment
the arrow
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Two-Space Collection

Color referenced record gray
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Two-Space Collection

Increment the gray-choosing
arrow

29



Two-Space Collection

Referenced is already copied, use
forwarding address

A
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Two-Space Collection

Choosing arrow reaches the end
of to-space: done
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Two-Space Collection

Right = from-space
Left = to-space
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Two-Space Collection on Vectors

* Everything is a number:
© Some numbers are immediate integers
© Some numbers are pointers

* An allocated record in memory starts with a tag,
followed by a sequence of pointers and immediate
integers

© The tag describes the shape
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Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: 7 Register 2: 0
From: 175 2 0 3 210 3 2 2 3 1

4
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Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: 7 Register 2: 0

From: 1 75 2 0 3 210 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
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Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: 7 Register 2: 0

From: 1 75 2 0 3 210 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A
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Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: 7 Register 2: 0

From: 1 75 2 0 3 210 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too =~ 0 O O O O O O O O o o o o

A
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Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: O Register 2: 0

From: 1 75 2 0 3 210 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too 3 2 2 0 0 0 O O O o o o0 O

A
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Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: O Register 2: 3
From: 99 3 2 0 3 21099 0 2 3 1

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too. 3 2 2 175 0 0 0 O 0 O O

A



Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: O Register 2: 3
From: 99 3 99 5 3 210099 0 2 3 1

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too. 3 2 5 175 2 0 0 0 0 O O

A



Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: O Register 2: 3

From: 99 3 99 5 3 21099 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too 3 2 5 175 2 0 0 O O O 0 O

A
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Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: O Register 2: 3

From: 99 3 99 5 3 21099 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too 3 2 5 175 2 3 0 O 0 O 0 O

A
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