Reference Counting And Cycles

An assighment can create a
cycle...




Reference Counting And Cycles

Adding a reference increments a
count




Reference Counting And Cycles

Lower-left records are
inaccessible, but not deallocated

1 In general, cycles break reference
counting




Garbage Collection

Garbage collection: a way to know whether a record
is accessible

* A record referenced by a register is live
* A record referenced by a live record is also live

* A program can only possibly use live records, because
there is no way to get to other records

* A garbage collector frees all records that are not live

* Allocate until we run out of memory, then run a
garbage collector to get more space

4-6



Garbage Collection Algorithm

* Color all records white
* Color records referenced by registers gray
* Repeat until there are no gray records:

© Pick a gray record, r

© For each white record that r points to, make it
gray
© Color r black

* Deallocate all white records



Garbage Collection

All records are marked white




Garbage Collection

Mark records referenced by
registers as gray




Garbage Collection

Need to pick a gray record

Red arrow indicates the chosen
record

10



Garbage Collection

Mark white records referenced
by chosen record as gray

11



Garbage Collection

Mark chosen record black

12



Garbage Collection

Start again: pick a gray record

13



Garbage Collection

No referenced records; mark
black

14



Garbage Collection

Start again: pick a gray record

15



Garbage Collection

Mark white records referenced
by chosen record as gray

16



Garbage Collection

Mark chosen record black

17



Garbage Collection

Start again: pick a gray record

18



Garbage Collection

®

No referenced white records;
mark black

19



Garbage Collection

®

No more gray records; deallocate
white records

Cycles do not break garbage
collection

20



Two-Space Copying Collectors

A two-space copying collector compacts memory as it
collects, making allocation easier.

Allocator:

* Partitions memory into to-space and from-space
* Allocates only in to-space

Collector:

* Starts by swapping to-space and from-space

 Coloring gray = copy from from=-space to
to-space

* Choosing a gray record = walk once though the new
to-space, update pointers

21



Two-Space Collection

Left = from-space
Right = to-space

22



Two-Space Collection

Mark gray = copy and leave
forward address

23



Two-Space Collection

Choose gray by walking through
to-space

24



Two-Space Collection

Mark referenced as gray

25



Two-Space Collection

Mark black = move gray-choosing
arrow

26



Two-Space Collection

Nothing to color gray; increment
the arrow

27



Two-Space Collection

Color referenced record gray

28



Two-Space Collection

Increment the gray-choosing
arrow

29



Two-Space Collection

Referenced is already copied, use
forwarding address

A

30



Two-Space Collection

Choosing arrow reaches the end
of to-space: done

31



Two-Space Collection

Right = from-space
Left = to-space

32



Two-Space Collection on Vectors

* Everything is a number:
© Some numbers are immediate integers
© Some numbers are pointers

* An allocated record in memory starts with a tag,
followed by a sequence of pointers and immediate
integers

© The tag describes the shape

33



Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: 7 Register 2: 0
From: 175 2 0 3 210 3 2 2 3 1

4

34



Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: 7 Register 2: 0

From: 1 75 2 0 3 210 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

35



Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: 7 Register 2: 0

From: 1 75 2 0 3 210 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

36



Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: 7 Register 2: 0

From: 1 75 2 0 3 210 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too =~ 0 O O O O O O O O o o o o

A

37



Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: O Register 2: 0

From: 1 75 2 0 3 210 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too 3 2 2 0 0 0 O O O o o o0 O

A

38



Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: O Register 2: 3
From: 99 3 2 0 3 21099 0 2 3 1

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too. 3 2 2 175 0 0 0 O 0 O O

A



Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: O Register 2: 3
From: 99 3 99 5 3 210099 0 2 3 1

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too. 3 2 5 175 2 0 0 0 0 O O

A



Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: O Register 2: 3

From: 99 3 99 5 3 21099 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too 3 2 5 175 2 0 0 O O O 0 O

A

41



Two-Space Vector Example

* 26-byte memory (I3 bytes for each space), 2 registers
© Tag |: one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Register |: O Register 2: 3

From: 99 3 99 5 3 21099 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too 3 2 5 175 2 3 0 O 0 O 0 O

A

42



