Manual Memory Management

Allocation:

s = (snake *)malloc (sizeof (snake)) ;

Deallocation:

free(s) ;

1-

2



When to Deallocate

int main() {
snake *s;
s = (snake *)malloc (sizeof (snake)) ;

don’t deallocate s, since exit releases all allocation

3-4



When to Deallocate

int simulate zoo() {
snake *s;
s = (snake *)malloc(sizeof (snake));

free(s) ;

int main() {

while(...) { simulate zoo();

do deallocate s, since simulate zoo might be called
many times

}

5

-6



From the HWI | Solution

res listing* make res listing(char* last,

char* first,
char* num) {

res listing* r = malloc(sizeof(res listing));

r->1.type = res type;

r->1.number strdup (num) ;

r->last strdup (last) ;

r->first = strdup(first);

return r;

+ caller doesn’t have to worry about string lifetimes

- explicit free_res listing is needed

7-8



List Deallocator

void free listing(res listing* r) {
free (r->1.number) ;
free (r->last) ;
free (r->first) ;
free(r) ;



From the HWI | Solution

char* read another line (FILE* f) ({
char buffer[256];
if ('fgets(buffer, 256, f))
buffer[0] = 0;
strip newline (buffer) ;
return strdup (buffer);

+ caller doesn’t have to supply a buffer
+ code could be improved to handle longer lines

— caller is responsible for free

10-11



From the HWI | Solution

last = read another line(f);

first = read another line(f);

number = read another line(f);

l = make res listing(last, first, number);

Should add

free(last) ;
free(first);
free (number) ;

12-13



From the HWI | Solution

last = read another line(f);

first = read another line(f);

number = read another line(f);

l = make res listing(last, first, number);

Should add

free(last) ;
free(first);
free (number) ;

14-15



Containers

typedef struct node {
void* wval;
int height;
struct node *left;
struct node *right;
} node;

struct avl tree {
node* root;

compare proc compare;

};

avl tree* make avl tree(compare proc compare);

+ function pointers never need to be deallocated
+/- free avl should free all internal nodes

? values in the container?

16-17



Containers

void free avl tree(avl tree* t) ({
free node (t->root) ;
free(t);

void free node (node* n) {
if (n) {
free node(n->left);
free node(n->right);
}

Options for values:
* Ignore, so client is responsible
* Accept a free proc along with compare proc

* Require that a particular deallocator works

18-19



Reference Counting

Reference counting: a way to know whether a
record has other users

* Attatch a count to every record, starting at 0

* When installing a pointer to a record (into a register
or another record), increment its count

* When replacing a pointer to a record, decrement its
count

* When a count is decremented to 0, decrement counts
for other records referenced by the record, then free
it

20-21



Reference Counting

Top boxes are the registers
expr, todos, etc.

Boxes in the blue area are
allocated with malloc

22



Reference Counting

Adjust counts when a pointer is
changed...

23



Reference Counting

... freeing a record if its count
goes to 0

24



Reference Counting

Same if the pointer is in a register

25



Reference Counting

Adjust counts after frees, too...

26



Reference Counting

... which can trigger more frees

27



Using Reference Counting

see miniracketb

28



Reference-Counting Issues

* Any missing release or retain!
* All release and retain ordered correctly?

* |Initial reference count!?

* Stack overflow via release cascade?

* Cycles?

29



