Door Variations and Person Attributes

Eventually, we want locked doors, short doors, magic
doors, and other kinds of doors

Finding an escape will depend on having keys, being a
certain height, etc.

Instead of adding more and more arguments to
escapePath, let’s introduce a Person to carry

attributes

Replace the destination-string argument of
escapePath with a Person argument, where a

Person has a destination and height



Door Classes

Person

String dest
double height

boolean isDest (String)
boolean isShorter (double)

IDoor

IPath escapePath(Person)

Escape Into

Room next
IPath escapePath (Person)

String name
IPath escapePath (Person)




Add a new kind of door, a short door, where a person

Short Doors

must be less that the door’s height to pass

IDoor

IPath escapePath(Person)

N

Escape

String name

Into

Room next

IPath escapePath (Person)

Adding a short door requires only the declaration of a

IPath escapePath (Person)

Short

Room next
double height

IPath escapePath (Person)

Short class — no other code changes!

3-5



Locked Doors

Add a new kind of door, a locked door, where a person

must have a key to pass

IDoor

IPath escapePath(Person)

N

Escape

String name

IPath escapePath (Person)

Into

Room next

IPath escapePath (Person)

Short

Locked

Room next
double height

Room next
String keyColor

IPath escapePath (Person)

IPath escapePath (Person)

A Person now needs keys...

6-8



Locked Doors

Besides adding Locked, we change Person to add the

notion of keys to the person

Person

String dest

double height

String key;

boolean isDest (String)
boolean isShorter (double)
boolean hasKey (String)

In contrast to adding new variants, adding new
operations requires changing the class



Racket versus Java

Racket:

© New variant = change old functions

S New function = no changes to old code
Java:

© New variant = no changes to old code

© New method = change old classes

This is the essential difference between functional
programming and object-oriented programming

10



