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1 Governing Equations
Let the motion be given by

x = ϕ(X, t)

where x(X) is the position of the material point X in the current configuration. The deformation gradient is
given by

F =
∂x
∂X

= ∇o x .

Let u(X) be the displacement of the material point given by

u(X, t) = x(X, t) −X .

Then the deformation gradient can be written as

F = 1 +
∂u
∂X

= 1 + ∇o u .

The determinant of F is
J := det(F ) .

The left Cauchy-Green deformation tensor is

B = FF T = (1 + ∇o u)(1 + ∇o u)T = 1 + ∇o u + (∇o u)T + (∇o u)(∇o u)T .

Let σ be the Cauchy stress and let P be the 1st Piola-Kirchhoff stress. Then,

σ = J−1 P F T .

Let the constitutive relation be given by

σ =
µ

J
(B − 1) +

λ

J
ln(J) 1 .

The Lagrangian version of the momentum equation is

∇o · P + ρ0b = ρ0ü
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where ρ0 is the density in the reference configuration, b is the body force (with appropriate units), and ü is the
material time derivative of the displacement.

The method of fictitious body forces involves assuming a displacement field over the body; finding the body
force, initial conditions, and boundary conditions that fit that solution; and then using that body force and the
computed BCs and ICs in the numerical algorithm to arrive at a solution. If the solution matches the assumed
displacement, then we’re good to go.

2 A 1-D example
Let’s write the equations in 1-D. The motion is given by

x1 = ϕ(X1, t) .

The deformation gradient is

F11 =
∂x1

∂X1
= 1 +

∂u1

∂X1
.

The determinant of the deformation gradient is

J = det(F ) = F11 = 1 +
∂u1

∂X1
.

The left Cauchy-Green deformation tensor is

B11 = 1 + 2
∂u1

∂X1
+

(
∂u1

∂X1

)2

.

The Cauchy stress and the 1st Piola-Kirchhoff stress are related by

σ11 =
1

F11
P11 F11 = P11 .

Let us assume that the constitutive model can be simplified to

σ11 =
1
2

C(B11 − 1) =
1
2

C

[
2

∂u1

∂X1
+

(
∂u1

∂X1

)2
]

where C is an elastic constant. The momentum equation is

∂P11

∂X1
+ ρ0 b1 = ρ0 ü1 .

Let us now assume that the displacement field is given by

u1(X1, t) = X2
1 sin(ω t) .

Therefore,
∂u1

∂X1
= 2 X1 sin(ω t)

∂u1

∂t
= X2

1 ω cos(ω t)

∂2u1

∂t2
= −X2

1 ω2 cos(ω t)

Therefore, the deformation gradient is

F11 = 1 + 2 X1 sin(ω t) .
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The left Cauchy-Green deformation is

B11 = 1 + 4 X1 sin(ω t) + 4 X2
1 sin2(ω t) .

The first Piola-Kirchhof stress is

P11 =
1
2

C [4 X1 sin(ω t) + 4 X2
1 sin2(ω t)] .

Therefore,
∂P11

∂X1
= 2 C sin(ω t)[1 + 2 X1 sin(ω t)] .

Plugging ∂P11
∂X1

and ∂2u1
∂t2

into the momentum equation, we get

2 C sin(ω t)[1 + 2 X1 sin(ω t)] + ρo b1 = −ρ0 X2
1 ω2 cos(ω t) .

Therefore, the body force is

b1 = −X2
1 ω2 cos(ω t) −

2 C

ρ0
sin(ω t)[1 + 2 X1 sin(ω t)] .

If the bar is of length L, the boundary conditions are

u1(0, t) = 0 and u1(L, t) = L2 sin(ω t) .

The initial conditions are
u1(X1, 0) = X2

1 sin(0) = 0 .

When you apply the body force b1(X1, t) and the initial and boundary conditions, you should get a solution that
matches the chosen function.

Note that all these have been done in a Lagrangian configuration. You could alternatively do the same
assuming a function u(x, t) and transforming the equations accordingly.
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