Method of Manufactured Solutions

Biswajit Banerjee

October 17, 2006

This is based on the following papers:

1) R. C. Batra and X. Q. Liang, 1997, "Finite dynamic deformations of smart structures," Computational Mechanics, 20, 427-438.
2) R. C. Batra nd B. M. Love, 2006, "Multiscale analysis of adiabatic shear bands in tungsten heavy alloy particulate composites," International Journal for Multiscale Computational Engineering, 4(1), 95-114.

1 Governing Equations

Let the motion be given by

$$
\mathbf{x}=\varphi(\mathbf{X}, t)
$$

where $\mathbf{x}(\mathbf{X})$ is the position of the material point \mathbf{X} in the current configuration. The deformation gradient is given by

$$
\boldsymbol{F}=\frac{\partial \mathbf{x}}{\partial \mathbf{X}}=\nabla_{o} \mathbf{x} .
$$

Let $\mathbf{u}(\mathbf{X})$ be the displacement of the material point given by

$$
\mathbf{u}(\mathbf{X}, t)=\mathbf{x}(\mathbf{X}, t)-\mathbf{X} .
$$

Then the deformation gradient can be written as

$$
\boldsymbol{F}=\mathbf{1}+\frac{\partial \mathbf{u}}{\partial \mathbf{X}}=\mathbf{1}+\nabla_{o} \mathbf{u} .
$$

The determinant of \boldsymbol{F} is

$$
J:=\operatorname{det}(\boldsymbol{F}) .
$$

The left Cauchy-Green deformation tensor is

$$
\boldsymbol{B}=\boldsymbol{F} \boldsymbol{F}^{T}=\left(\mathbf{1}+\boldsymbol{\nabla}_{o} \mathbf{u}\right)\left(\mathbf{1}+\boldsymbol{\nabla}_{o} \mathbf{u}\right)^{T}=\mathbf{1}+\boldsymbol{\nabla}_{o} \mathbf{u}+\left(\boldsymbol{\nabla}_{o} \mathbf{u}\right)^{T}+\left(\boldsymbol{\nabla}_{o} \mathbf{u}\right)\left(\boldsymbol{\nabla}_{o} \mathbf{u}\right)^{T} .
$$

Let $\boldsymbol{\sigma}$ be the Cauchy stress and let \boldsymbol{P} be the 1st Piola-Kirchhoff stress. Then,

$$
\boldsymbol{\sigma}=J^{-1} \boldsymbol{P} \boldsymbol{F}^{T} .
$$

Let the constitutive relation be given by

$$
\boldsymbol{\sigma}=\frac{\mu}{J}(\boldsymbol{B}-\mathbf{1})+\frac{\lambda}{J} \ln (J) \mathbf{1} .
$$

The Lagrangian version of the momentum equation is

$$
\nabla_{o} \cdot \boldsymbol{P}+\rho_{0} \mathbf{b}=\rho_{0} \ddot{\mathbf{u}}
$$

where ρ_{0} is the density in the reference configuration, \mathbf{b} is the body force (with appropriate units), and $\ddot{\mathbf{u}}$ is the material time derivative of the displacement.

The method of fictitious body forces involves assuming a displacement field over the body; finding the body force, initial conditions, and boundary conditions that fit that solution; and then using that body force and the computed BCs and ICs in the numerical algorithm to arrive at a solution. If the solution matches the assumed displacement, then we're good to go.

2 A 1-D example

Let's write the equations in 1-D. The motion is given by

$$
x_{1}=\varphi\left(X_{1}, t\right) .
$$

The deformation gradient is

$$
F_{11}=\frac{\partial x_{1}}{\partial X_{1}}=1+\frac{\partial u_{1}}{\partial X_{1}} .
$$

The determinant of the deformation gradient is

$$
J=\operatorname{det}(\boldsymbol{F})=F_{11}=1+\frac{\partial u_{1}}{\partial X_{1}} .
$$

The left Cauchy-Green deformation tensor is

$$
B_{11}=1+2 \frac{\partial u_{1}}{\partial X_{1}}+\left(\frac{\partial u_{1}}{\partial X_{1}}\right)^{2} .
$$

The Cauchy stress and the 1st Piola-Kirchhoff stress are related by

$$
\sigma_{11}=\frac{1}{F_{11}} P_{11} F_{11}=P_{11} .
$$

Let us assume that the constitutive model can be simplified to

$$
\sigma_{11}=\frac{1}{2} C\left(B_{11}-1\right)=\frac{1}{2} C\left[2 \frac{\partial u_{1}}{\partial X_{1}}+\left(\frac{\partial u_{1}}{\partial X_{1}}\right)^{2}\right]
$$

where C is an elastic constant. The momentum equation is

$$
\frac{\partial P_{11}}{\partial X_{1}}+\rho_{0} b_{1}=\rho_{0} \ddot{u_{1}} .
$$

Let us now assume that the displacement field is given by

$$
u_{1}\left(X_{1}, t\right)=X_{1}^{2} \sin (\omega t)
$$

Therefore,

$$
\begin{aligned}
\frac{\partial u_{1}}{\partial X_{1}} & =2 X_{1} \sin (\omega t) \\
\frac{\partial u_{1}}{\partial t} & =X_{1}^{2} \omega \cos (\omega t) \\
\frac{\partial^{2} u_{1}}{\partial t^{2}} & =-X_{1}^{2} \omega^{2} \cos (\omega t)
\end{aligned}
$$

Therefore, the deformation gradient is

$$
F_{11}=1+2 X_{1} \sin (\omega t)
$$

The left Cauchy-Green deformation is

$$
B_{11}=1+4 X_{1} \sin (\omega t)+4 X_{1}^{2} \sin ^{2}(\omega t) .
$$

The first Piola-Kirchhof stress is

$$
P_{11}=\frac{1}{2} C\left[4 X_{1} \sin (\omega t)+4 X_{1}^{2} \sin ^{2}(\omega t)\right] .
$$

Therefore,

$$
\frac{\partial P_{11}}{\partial X_{1}}=2 C \sin (\omega t)\left[1+2 X_{1} \sin (\omega t)\right] .
$$

Plugging $\frac{\partial P_{11}}{\partial X_{1}}$ and $\frac{\partial^{2} u_{1}}{\partial t^{2}}$ into the momentum equation, we get

$$
2 C \sin (\omega t)\left[1+2 X_{1} \sin (\omega t)\right]+\rho_{o} b_{1}=-\rho_{0} X_{1}^{2} \omega^{2} \cos (\omega t) .
$$

Therefore, the body force is

$$
b_{1}=-X_{1}^{2} \omega^{2} \cos (\omega t)-\frac{2 C}{\rho_{0}} \sin (\omega t)\left[1+2 X_{1} \sin (\omega t)\right] .
$$

If the bar is of length L, the boundary conditions are

$$
u_{1}(0, t)=0 \quad \text { and } \quad u_{1}(L, t)=L^{2} \sin (\omega t) .
$$

The initial conditions are

$$
u_{1}\left(X_{1}, 0\right)=X_{1}^{2} \sin (0)=0 .
$$

When you apply the body force $b_{1}\left(X_{1}, t\right)$ and the initial and boundary conditions, you should get a solution that matches the chosen function.

Note that all these have been done in a Lagrangian configuration. You could alternatively do the same assuming a function $\mathbf{u}(\mathbf{x}, t)$ and transforming the equations accordingly.

